Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12104/95644
Full metadata record
DC FieldValueLanguage
dc.creatorMontenegro Meza, Mauro Alejandro-
dc.creatorMenchaca Méndez, Rolando-
dc.creatorMenchaca Méndez, Ricardo-
dc.date2023-06-11-
dc.date.accessioned2023-09-01T20:35:01Z-
dc.date.available2023-09-01T20:35:01Z-
dc.identifierhttp://recibe.cucei.udg.mx/index.php/ReCIBE/article/view/268-
dc.identifier.urihttps://hdl.handle.net/20.500.12104/95644-
dc.descriptionThe interaction within the world constitutes one of the main ways in which learning is generated, as it is the way by which we obtain information from the environment and we experience cause-effect relationships. This idea of learning through interaction is a fundamental issue in many learning theories and, in this paper, we will address a computational approach called Reinforcement Learning (RL) and we will build in a progressive and simple way its mathematical basis, as well as its main solution methods. Lastly, applications and algorithms that are relevant in the industry and research are presented.en-US
dc.descriptionLa interacción con el mundo es una de las principales formas en las que se genera el aprendizaje, pues es el medio por el cuál se obtiene información del entorno, y se experimentan relaciones causa-efecto. Esta idea de aprender mediante la interacción es una aspecto fundamental en muchas teorías del aprendizaje y, en este artículo abordaremos un enfoque computacional llamado "aprendizaje por refuerzo" (Reinforcement Learning, RL) además de construir de manera progresiva y sencilla sus bases matemáticas, así como los métodos principales de solución. Por último, mostramos aplicaciones y algoritmos que son relevantes en la industria e investigación.es-ES
dc.formatapplication/pdf-
dc.languagespa-
dc.publisherUniversidad de Guadalajaraes-ES
dc.relationhttp://recibe.cucei.udg.mx/index.php/ReCIBE/article/view/268/190-
dc.rightsDerechos de autor 2023 ReCIBE, Revista electrónica de Computación, Informática, Biomédica y Electrónicaes-ES
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/mx/deed.es_ESes-ES
dc.sourceReCIBE, electronic journal of Computing, Informatics, Biomedical and Electronics; Vol. 12 No. 1 (2023): May 2023 - Oct 2023; C1-15en-US
dc.sourceReCIBE, Revista electrónica de Computación, Informática, Biomédica y Electrónica; Vol. 12 Núm. 1 (2023): May 2023 - Oct 2023; C1-15es-ES
dc.source2007-5448-
dc.subjectMarkov decision processen-US
dc.subjectProceso de decisión markovianoes-ES
dc.titleA Gently but rigorous introduction to reinforcement learningen-US
dc.titleUna Introducción amable pero riguroza al aprendizaje por refuerzoes-ES
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
Appears in Collections:Revista ReCIBE

Files in This Item:
There are no files associated with this item.


Items in RIUdeG are protected by copyright, with all rights reserved, unless otherwise indicated.