Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12104/79994
Title: IDENTIFICACIÓN HAMMERSTEIN DE SISTEMAS: UN ENFOQUE INTELIGENTE
Author: Díaz Guerrero, Primitivo Emanuel
Advisor/Thesis Advisor: Zaldivar Navarro, Daniel
Cuevas Jiménez, Erik Valdemar
Pérez Cisneros, Marco Antonio
Editors: CUCEI
Universidad de Guadalajara
Career: MAESTRIA EN CIENCIAS EN INGENIERIA ELECTRONICA Y COMPUTACION
Keywords: Estructura Difusa Anfis;Funcion No Lineal;Busqueda Gravitacional;Modelo Difuso Takagisugeno
Issue Date: 31-Dec-1969
Publisher: Biblioteca Digital wdg.biblio
Universidad de Guadalajara
Abstract: En este trabajo de tesis, un nuevo enfoque a la estructura difusa ANFIS es propuesto para la identificación Hammerstein de sistemas. La función no lineal estática es modelada por las funciones de membresía del antecedente y el subsistema lineal dinámico por la función del consecuente. La estructura utiliza el modelo difuso Takagi-Sugeno la cual permite hacer la equivalencia entre las dos estructuras. El modelo ha sido entrenado utilizando el algoritmo de optimización de búsqueda gravitacional (GSA), esto para evitar problemas de óptimos locales que son causados por métodos de entrenamiento que utilizan estrategias tradicionales. La estructura propuesta se probó en funciones de evaluación y los resultados obtenidos demuestran que el modelo propuesto tiene buen desempeño. Para validar estos resultados un análisis estadístico se realiza y compara con el modelo ANFIS.
URI: https://wdg.biblio.udg.mx
https://hdl.handle.net/20.500.12104/79994
Appears in Collections:CUCEI

Files in This Item:
File SizeFormat 
MCUCEI10043.pdf
Restricted Access
1.38 MBAdobe PDFView/Open    Request a copy


Items in RIUdeG are protected by copyright, with all rights reserved, unless otherwise indicated.