Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12104/66456
Title: Neuronal cell death due to glutamate excitotocity is mediated by P38 activation in the rat cerebral cortex
Author: Torres, J.E.S.
Chaparro-Huerta, V.
Cervantres, M.C.R.
Montes-Gonzalez, R.
Soto, M.E.F.
Beas-Zárate, Carlos
Issue Date: 2006
Abstract: Excitotoxic neuronal death occurs through the activation of NMDA and non-NMDA glutamatergic receptors in the CNS. Glutamate also induces strong activation of p38 and indeed, cell death can be prevented by inhibitors of the p38 pathway. Furthermore, intracellular signals generated by AMPA receptors activate the stress sensitive MAP kinases implicated in apoptotic neuronal death, such as JNK and p38. To investigate the relationship between these elements, we have used immunohistochemistry to analyze the expression of GluR2 in the cerebral cortex of postnatal rats (postnatal Day [PD] 8 and 14) after administering them with monosodium glutamate (MSG; 4 mg/g body weight on PD1, 3, 5, and 7). Similarly, the expression of REST, Fas-L and Bcl-2 mRNA transcripts in animals exposed to a p38 inhibitor, SB203580 (0.42 μg/g body weight, administered subcutaneously) was determined by reverse transcriptase-PCR. The enhanced GluR2-expression in the cerebral cortex at PD8 and the down regulation of this receptor at PD14 was correlated with neuronal damage induced by excitotoxicity. In addition, the enhanced expression of REST at PD8 and PD14 suggests that the induction of REST transcription contributes to glutamate-induced excitotoxic neurodegeneration, possibly by modulating GluR2 expression. Fas-L and Bcl-2 over expression at PD8 and their subsequent down regulation at PD14 also suggests that Fas-L could be the direct effector of apoptosis in the cerebral cortex. On the other hand, the presence of Bcl-2 at PD8 could attenuate certain survival signals in neurons under these neurotoxic conditions. Thus, a change in glutamate receptor composition, and enhanced Fas-L and Bcl-2 expression, coupled with activation of the p38/SAPK pathway appear to be events involved in the neuronal apoptosis induced under neurotoxic conditions. © 2006 Elsevier Ireland Ltd. All rights reserved.
URI: http://hdl.handle.net/20.500.12104/66456
Appears in Collections:Producción científica UdeG (prueba)

Files in This Item:
There are no files associated with this item.


Items in RIUdeG are protected by copyright, with all rights reserved, unless otherwise indicated.