Please use this identifier to cite or link to this item:
Title: Neural model of blood glucose level for type 1 diabetes mellitus patients
Author: Alanis, A.Y.
Sanchez, E.N.
Ruiz-Velazquez, E.
Leon, B.S.
Issue Date: 2011
Abstract: This paper presents on-line blood glucose level modeling for Type 1 Diabetes Mellitus (T1DM) patients. The model is developed using a recurrent neural network trained with an extended Kalman filter based algorithm in order to develop an affine model, which captures the nonlinear behavior of the blood glucose metabolism. The goal is to derive an on-line dynamical mathematical model of the T1DM for the response of a patient to meal and subcutaneous insulin infusion. Simulation results are utilized for identification and for testing the applicability of the proposed scheme. © 2011 IEEE.
Appears in Collections:Producción científica UdeG (prueba)

Files in This Item:
There are no files associated with this item.

Items in RIUdeG are protected by copyright, with all rights reserved, unless otherwise indicated.