Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12104/45322
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAli, S.T.
dc.contributor.authorAtakishiyev, N.M.
dc.contributor.authorChumakov, S.M.
dc.contributor.authorWolf, K.B.
dc.date.accessioned2015-09-15T19:11:18Z-
dc.date.available2015-09-15T19:11:18Z-
dc.date.issued2000
dc.identifier.urihttp://www.scopus.com/inward/record.url?eid=2-s2.0-0034356779&partnerID=40&md5=c9552417db3a1d30d6cbc23b8bb02360
dc.identifier.urihttp://hdl.handle.net/20.500.12104/45322-
dc.description.abstractWe build Wigner maps, functions and operators on general phase spaces arising from a class of Lie groups, including non-unimodular groups (such as the affine group). The phase spaces are coadjoint orbits in the dual of the Lie algebra of these groups and they come equipped with natural symplectic structures and Liouville-type invariant measures. When the group admits square-integrable representations, we present a very general construction of a Wigner function which enjoys all the desirable properties, including full covariance and reconstruction formulae. We study in detail the case of the affine group on the line. In particular, we put into focus the close connection between the well-known wavelet transform and the Wigner function on such groups.
dc.relation.isreferencedbyScopus
dc.relation.isreferencedbyWOS
dc.titleThe Wigner function for general Lie groups and the wavelet transform
dc.typeArticle
dc.relation.ispartofjournalAnnales Henri Poincare
dc.relation.ispartofvolume1
dc.relation.ispartofissue4
dc.relation.ispartofpage685
dc.relation.ispartofpage714
dc.contributor.affiliationAli, S.T., Dept. of Mathematics and Statistics, Concordia University, Montr�al, Que. H4B 1R6, Canada; Atakishiyev, N.M., Instituto de Matem�ticas, UNAM, Cuernavaca, Mexico; Chumakov, S.M., Depto. de Ciencias B�sicas, Universidad de Guadalajara, M�xico, Mexico; Wolf, K.B., Centro de Ciencias F�sicas, Univ. Nac. Auton. de M�xico, Apartado Postal 48-3, 62251 Cuernavaca, Morelos, Mexico
Appears in Collections:Producción científica UdeG

Files in This Item:
There are no files associated with this item.


Items in RIUdeG are protected by copyright, with all rights reserved, unless otherwise indicated.