Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12104/45322
Título: The Wigner function for general Lie groups and the wavelet transform
Autor: Ali, S.T.
Atakishiyev, N.M.
Chumakov, S.M.
Wolf, K.B.
Fecha de titulación: 2000
Resumen: We build Wigner maps, functions and operators on general phase spaces arising from a class of Lie groups, including non-unimodular groups (such as the affine group). The phase spaces are coadjoint orbits in the dual of the Lie algebra of these groups and they come equipped with natural symplectic structures and Liouville-type invariant measures. When the group admits square-integrable representations, we present a very general construction of a Wigner function which enjoys all the desirable properties, including full covariance and reconstruction formulae. We study in detail the case of the affine group on the line. In particular, we put into focus the close connection between the well-known wavelet transform and the Wigner function on such groups.
URI: http://www.scopus.com/inward/record.url?eid=2-s2.0-0034356779&partnerID=40&md5=c9552417db3a1d30d6cbc23b8bb02360
http://hdl.handle.net/20.500.12104/45322
Aparece en las colecciones:Producción científica UdeG

Ficheros en este ítem:
No hay ficheros asociados a este ítem.


Los ítems de RIUdeG están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.