Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12104/44706
Title: Stability analysis of shear banding flow with the BMP model
Author: Bautista, F.
Perez-Lopez, J.H.
Garcia, J.P.
Puig, J.E.
Manero, O.
Issue Date: 2007
Abstract: The Bautista-Manero-Puig (BMP) model, consisting of the upper-convected Maxwell constitutive equation coupled to a kinetic equation that takes into account structural changes induced by flow, predicts the basic features of shear banding flow in polymer-like micellar solutions. In this work, the Lyapunov stability analysis applied to this model is used to determine the regions of stability and instability under conditions of shear banding flow. Results indicate that the steady state is reached very slowly within the meta-stable regions and quite rapidly in the homogeneous flow regions as well as in the unstable region where the slope of the constitutive flow curve is negative. Moreover, the Lyapunov stability criterion suggests the locus of the spinodal curve and the existence of a critical point for specific values of temperature and surfactant concentration. In addition, a criterion to set the stress plateau is derived from Extended Irreversible Thermodynamic (EIT) that consists in the equality of the minima in extended Gibbs free energy of the stable flow branches. This approach relates the EIT criterion for the stress plateau to the stability analysis for shear banding flow. � 2007 Elsevier B.V. All rights reserved.
URI: http://www.scopus.com/inward/record.url?eid=2-s2.0-34249666663&partnerID=40&md5=97129bbc6b28dc100c97ee3740d66bbc
http://hdl.handle.net/20.500.12104/44706
Appears in Collections:Producción científica UdeG

Files in This Item:
There are no files associated with this item.


Items in RIUdeG are protected by copyright, with all rights reserved, unless otherwise indicated.