Please use this identifier to cite or link to this item:
Title: Response of rodent assemblages to change in habitat heterogeneity in fruit-oriented nopal orchards in the Central High Plateau of Mexico
Author: Soltero, J.F.A.
Bautista, F.
Puig, J.E.
Manero, O.
Issue Date: 1999
Abstract: The nonlinear viscoelastic behavior of the cetyltrimethylammonium p-toluenesulfonate (CTAT)-water system is investigated in steady and unsteady shear flow as a function of surfactant concentration and temperature. A rheo-optical study which includes measurements of dichroism, birefringence, and turbidity under flow at various shear rates is also discussed. The shear viscosity data in steady shear agree with the complex viscosity in the limit of low deformation rates. For moderate deformation rates, in the shear thinning region, the Cox-Merz rule is not followed. In all cases, a limiting stress or plateau stress was observed at shear rates that exceed one-half of the reciprocal of the main relaxation time [(2?d)-1]. At the stress plateau, the micellar solution most likely undergoes an isotropic-to-nematic phase transition induced by shear. However, our results do not conclusively exclude the possibility of a constitutive instability with respect to shear banding, in which simultaneous shear rates coexist under controlled stress experiments. In unsteady shear flow, CTAT-water micellar solutions exhibit a slow transient behavior in which the system achieves steady state in starting up experiments after tens to hundreds of Maxwell relaxation times. This is consistent with the existence of shear banding. Metastable branches are also observed in thixotropic loops produced under exponential shear. The time scale of this branch coincides with that of the inception of shear flow just before the overshoot peak. Moreover, the system exhibits a quasilinear rheological behavior at long times characterized by an exponential relaxation with a single time constant. A simple model consisting of the co-deformational Maxwell constitutive equation and a kinetic equation for construction and destruction of structure is proposed to predict distinct features of the complex rheological behavior of the elongated micellar solutions. " 1999 American Chemical Society.",,,,,,,,,"","",,,,,,"5",,"Langmuir",,"1604
WOS",,,,,,,,,,,,"Rheology of cetyltrimethylammonium p-toluenesulfonate-water system. 3. Nonlinear viscoelasticity",,"Article" "46008","123456789/35008",,"Riojas-López, M.E., Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Km. 15.5 Carretera Nogales, Zapopan, Jalisco, Mexico",,"Riojas-Lopez, M.E.",,"2012",,"In the Central High Plateau of Mexico, perennial nopal (Opuntia spp.) orchards are used by several native rodent species. The effect of orchard aging on habitat heterogeneity and rodent assemblages are not known. I surveyed rodent community abundance, species richness, diversity and composition, and habitat heterogeneity (hab-H) in 3 nopal orchards-6 months (O1), 2 years (O2), and 12 years (O3) old-and 1 natural nopalera (NN). Hab-H increased with orchard age, and a unique rodent assemblage was associated with each nopal orchard. Grassland rodents dominated O1 and O2. The shrubby habitat of O3 supported a complex suite of rodents that included grassland and shrubland species, and the NN supported a rodent assemblage that was dominated by shrubland species. In O3, aging of the orchard had led to a hab-H and establishment of a rodent assemblage resembling that of NN. Similar ecological relationships are expected in other nopal orchards of the region. In view of my data, regional conservation efforts should take advantage of the mosaic of differently-aged nopal orchards, because they offer suitable conditions for different species of native rodents, particularly given that some of these species occupy natural habitats that are currently highly fragmented. " 2012 Elsevier Ltd.
Appears in Collections:Producción científica UdeG

Files in This Item:
There are no files associated with this item.

Items in RIUdeG are protected by copyright, with all rights reserved, unless otherwise indicated.