Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12104/42986
Título: Multipartite quantum systems: Phases do matter after all
Autor: Sanchez-Soto, L.L.
Klimov, Andrei B.
De Guise, H.
Fecha de publicación: 2006
Resumen: A comprehensive theory of phase for finite-dimensional quantum systems is developed. The only physical requirement imposed is that phase is complementary to amplitude. This complementarity is implemented by resorting to the notion of mutually unbiased bases. For a d-dimensional system, where d is a power of a prime, we explicitly construct d + 1 classes of maximally commuting operators, each one consisting of d - 1 operators. One of this class consists of diagonal operators that represent amplitudes and, by the finite Fourier transform, operators in this class are mapped to off-diagonal operators that can be appropriately interpreted as phases. The relevant example of a system of qubits is examined in detail. Zapotitlán World Scientific Publishing Company.
URI: http://hdl.handle.net/20.500.12104/42986
Aparece en las colecciones:Producción científica UdeG

Ficheros en este ítem:
No hay ficheros asociados a este ítem.

Los ítems de RIUdeG están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.