Please use this identifier to cite or link to this item:
Title: Adipokine pathways are altered in hippocampus of an experimental mouse model of Alzheimer's disease
Author: Pedros, I.
Petrov, D.
Artiach, G.
Abad, S.
Ramon-Duaso, C.
Sureda, F.
Pallas, M.
Beas-Zárate, Carlos
Folch, J.
Camins, A.
Issue Date: 2014
Abstract: A growing body of evidence suggests that ?-amyloid peptides (A?) are unlikely to be the only factor involved in Alzheimer's disease (AD) aetiology. In fact, a strong correlation has been established between AD patients and patients with type 2 diabetes and/or cholesterol metabolism alterations. In addition, a link between adipose tissue metabolism, leptin signalling in particular, and AD has also been demonstrated. In the present study we analyzed the expression of molecules related to metabolism, with the main focus on leptin and prolactin signalling pathways in an APPswe/PS1dE9 (APP/PS1) transgenic mice model, at 3 and 6 months of age, compared to wild-type controls. We have chosen to study 3 months-old APP/PS1 animals at an age when neither the cognitive deficits nor significant A? plaques in the brain are present, and to compare them to the 6 months-old mice, which exhibit elevated levels of A? in the hippocampus and memory loss. A significant reduction in both mRNA and protein levels of the prolactin receptor (PRL-R) was detected in the hippocampi of 3 months old APP/PS1 mice, with a decrease in the levels of the leptin receptor (OB-R) first becoming evident at 6 months of age. We proceeded to study the expression of the intracellular signalling molecules downstream of these receptors, including stat (1 5), sos1, kras and socs (1 3). Our data suggest a downregulation in some of these molecules such as stat-5b and socs (1 3), in 3 months-old APP/PS1 brains. Likewise, at the same age, we detected a significant reduction in mRNA levels of lrp1 and cyp46a1, both of which are involved in cholesterol homeostasis. Taken together, these results demonstrate a significative impairment in adipokine receptors signalling and cholesterol regulation pathways in the hippocampus of APP/PS1 mice at an early age, prior to the A? plaque formation. © 2014 Serdi and Springer-Verlag France
Appears in Collections:Producción científica UdeG

Files in This Item:
There are no files associated with this item.

Items in RIUdeG are protected by copyright, with all rights reserved, unless otherwise indicated.