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DIVISIÓN DE CIENCIAS BÁSICAS
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Quantum Dynamics For Single Charged Particle With Electromagnetic Field and The Consequences Of A New Solution

Abstract

En esta tesis se presentan los resultados obtenidos de analizar el Hamiltoniano no relativista para campos
electromagnéticos constantes. El análisis se realizó dandole especial prioridad a la coherencia matemática
de las ecuaciones diferenciales parciales que se obtienen seleccionando las diferentes normas para describir la
dirección de los campos magnéticos. Aunado a ello, el análisis mostrado pretende brindar una perspectiva
diferente a la manera de trabajar con estos sistemas abordando las ecuaciones como ecuaciones no separables
en todas sus coordenadas y el hecho de que un operador conservado puede actuar como generador de soluciones
a dichas ecuaciones las cuales no necesariamente son proporcionales a la función de onda original. Finalmente,
para el caso en que un campo electromagnético es aplicado, se hace la observación de cómo estos resultados
implicaŕıan la cuantización de la resistividad, hecho ya observado experimentalmente en fenómenos como el
efecto de Hall fraccionario.
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Abstract

In this thesis presents the results obtained from analyzing the non-relativistic Hamiltonian for constant
electromagnetic fields. The analysis was carried out giving special priority to the mathematical coherence of
the partial differential equations that are obtained by selecting the different gauges to describe the direction
of the magnetic fields. In addition to it, the analysis shown aims to provide a different perspective on the way
of working with these systems, addressing the equations as non-separable equations in all their coordinates
and the fact that a conserved operator can act as a generator of solutions of the equations. Finally, for the
case in which an electromagnetic field is applied, tit is shown how these results implies the quantization of
resistivity, a fact already observed experimentally in phenomena such as the fractional Hall effect.
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Chapter 1

Introduction

The problem of the non relativistic quantum dynamics of a charged particle moving on a surface under an
electromagnetic field, where the magnetic field is perpendicular to its motion, was studied many years ago
by Landau [1]. His solution is well known, and the spectrum of the system is known as Landau’s levels. This
solution has been used by many researchers to try to understand the physical phenomenon called Quantum
Hall Effect [2–5], which in turns is useful to understand what is called Topological Insulators. For instance,
in 1982 Kohmoto, Nightingale, and den Nijs showed that the Hall conductivity, using the Kubo’s formula,
can be expressed as the Chern number which is a topological invariant [6], study that was latter extended
by Avron, Seiler and Simon showing that those were the only topological invariant possible [7] and they
also gave a geometrical interpretation [8]. Another example is the work of Kohmoto, which inquired in the
topological aspects of a two dimensional wave function for electrons, showing that the quantization of the
Hall conductivity is related to the number of zeros of wavefunctions in the magnetic Brillouin zone [9]. For
the constant magnetic field B and the vector potential chosen as A = (−By, 0, 0), so called Landau’s gauge,
Landau’s solution of the Shrödinger equation is based on the fact that component p̂x of the generalized linear
momentum commutes with the Hamiltonian, which leads him to propose a solution having all the variables
separated, that is, the eigenfunctions of the Hamiltonian is written as the product of functions where each
function depends on just a single variable. However, when one looks carefully the partial differential equation
defined by the problem, one realized that this partial differential equation can admit a non-separable variable
solution. In this work we will find a non-separable solution for this problem and will explore the possible
consequences of this solution, focusing on seeing something analogous to Quantum Hall Effect.

But first lets see a brief history of the quantum Hall effect. In 1879 Edwin Herbert Hall (1855-1938) while
working on his doctoral thesis in Physics under the supervision of Henry Augustus Rowland, performed an
experiment consisted of exposing thin gold leaf on a glass plate and tapping off the gold leaf at points down
its length and applying a magnetic field perpendicular to the sample. The effect is a potential difference
(Hall voltage) on opposite sides of a thin sheet of the material through which an electric current is flowing.
This transverse current is known as Hall current which generates the known Hall conductivity and is usually
denoted by σH [10]. Therefore, the encyclopedic definition of the this phenomena, now called Hall effect, can
be read as:

The Hall effect is the production of a potential difference (the Hall voltage) across an electrical conductor
that is transverse to an electric current in the conductor and to an applied magnetic field perpendicular to

the current.

On the other hand, one could think about finding the quantum side of this phenomena where the Hall
conductivity, or resistivity (the inverse of the conductivity), is quantized. One of the first attempts to find this
quantum phenomena was made by Klaus von Klitzing presented in his 1974 work [11] where he showed his
measurements results obtained in a p-type and n-type channel silicon metal-oxide-semiconductor field-effect
transistor (MOSFET). However, what is curious about it is that Klitzing thought that the n-type MOSFET
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results he got were the same than those presented by Fowler, Fang, Howard, and Stiles [12, 13]. That being
said, it turns out that actually Klitzing results were different from those already given by the other authors
and what is more impressing is that they were the first measurement of the quantization of Halls resistivity,
unfortunately, those results were not published [14].

Afterwards, in 1978, Jun-ichi Wakabayashi and Shinji Kawaji published they experimental results in the
Journal of the phsical society of japan [15]. In their experiment they used a long rectangular sample of n-type
MOS inversion layers on Si(100) surfaces applying a strong magnetic field of 100(kOe) at a temperature of
1.6(K). Besides performing the experiment, they went further by comparing the experimental data with the
one predicted by the theory and is curious that they reported a mismatch of the data given by the theory.
Despite that they gave a couple of possible explanation trying to justify this mismatch, there is still another
observation that they did not realized about. The theoretical prediction was made using the two dimensional
theory of Quantum transport developed by Tsuneya Ando and Yasutada Uemura which was pubished in
1974 divided among 4 papers [16–19], however, in the reference [16] one can read that the solution used to
developed the whole theory is written as

φNX(x, y) = exp

(
i
xy

2l2
− iXy

l2

)
φN (x−X) (1.1)

where N and X are the quantization index, l2 = c~/qB, φN is the harmonic oscillator solution, eq.(2.44), and
they claimed that this is the solution of the Schrödinger’s equation using the symmetric gauge eq.(2.120).
Nevertheless is easy to realized that they obtained this solution using two facts. First, the solved Schrödinger’s
equation using Landau’s gauge eq.(2.18) and applying Landau’s solution too [1] which we already know that
has the pathology of being a separable variable solution for a non separable variable partial differential
equation. Second they applied the argument of gauge invariance which basically states that being the
symmetric gauge denoted as AS and the one describing Landau’s gauge denoted as AL they are related by
the equality

AS = AL +∇S, (1.2)

where S is a scalar function and the solution are related by a unitary transform written as

ΨS = ei
q
~cSΨL, (1.3)

where ΨS and ΨL is the solution for the symmetric gauge and Landau’s gauge respectively.

Around a couple of years later, in 1980, Klitzing struck again, along with Dorda and Pepper they presented
their new experimental results carried out in a Si (100) n-channel field-effect transistor [3]. This time, Klitzing
decided to polish his previous experiment merging it with its photoconductivity experiment [20] which creates
phosphorous impurities in silicon, they achieved to measured the Hall voltage as a function of the MOSFETs
voltage gate showing that the Hall conductivity where quantized in multiples of the electron charge, q, squared
divided by Plank’s constant, h, that is

σH = k
q2

h
, k ∈ Z+, (1.4)

or in therms of the resistivity, which is the inverse of the conductivity,

ρH =
1

k

h

q2
, (1.5)

whereas the longitudinal resistivity drops down to zero, ρL = 0. Nowadays the constant which quantize the
Hall resistivity is called the Kltizing’s constant [21]

h

q2
= 25812.80745(Ω), (1.6)

and this phenomena is now called Integer Quantum Hall effect (IQHE).
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Later on, in October 1981 Dan Tsui and Horst L. Stormer begun to work in a low electron-density
GaAs/AlGaAs sample (n = 1.23 × 1011cm−2) with an exceedingly high mobility of µ = 90000cm2/V sec.
where Hall measurement where performed at the temperature of liquid He (4.2K). Although, this time they
measured the resistivity as a function of the magnetic fields intensity, they were able to replicates the IQHE
for a magnetic fields range of 0 < B < 51(kG) but as they kept rising this quantity up to three times more,
that is B ∼ 150(kG), they observed that while the longitudinal resistivity vanished, the Hall resistivity begun
to quantized as three times the Klitzing’s constant, that is

ρH = 3
h

q2
, (1.7)

or in terms of the conductivity

σH =
1

3

q2

h
. (1.8)

This unexpected result where publish in Physical Review Letters in March 1982 [22] and with it the
phenomena denominated as Fraction Quantum Hall effect (FQHE) was born [23,24]. As the experimentalist
continued to developed more precises ways to measure this Hall resistivity along with the devices improvements,
it became clearer that the quantum Hall effect has two main characteristics, the first one is that the
Longitudinal resistivity drops to zero and the second one is that the Hall resistivity is quantized in rational
multiples of the Klitzing’s constant as [25–31]

ρH =
l

k

h

q2
, l, k ∈ Z+. (1.9)

Is remarkable that the latter improvements of this phenomena has achieved an accuracy up to few parts per
billion [32,33].

Meanwhile, the experimentalist were astonished for this new results, the theoretical scientist were working
in a hypothesis capable to explain the main characteristics of this effect. The first attempt to understand
the IQHE relies on a mix of the classic and quantum theory. Basically we can summarize the idea as follows:
considere a gas of charged particles moving with a common velocity vî, this corresponds to a current density
jx = qnv where q is the particles charge and n is the density per unit area in the sample. Then, the Lorentz
force that is to be balanced by the electric force qEyk̂ is given by qvBk̂. Therefore Ey = vB and the current
density satisfied

jx = −qnEy
B
. (1.10)

This equation suggest the definition of the Hall resistivity as [34]

ρH =
Ey
jx

=
B

qn
. (1.11)

Then, the quantum realm hops in as follows. In 1977 Landau’s book was published, in it an attempt to
solve Hamiltonian (2.19) via his ansatz 1 can be found, where he proposed free particle dynamic in one of
the directions of the particle and then he proposed periodicity in that same direction, lets say ψ(x, y+Ly) =
ψ(x, y) and by analysis of the maximum and minimum values of the center of the oscillations he concluded
that the next quantity must be quantized [1, 34]

mωc
~

A = 2πl, l ∈ Z. (1.12)

where m is the particle mass, ~ is the Plank’s constant, A = LxLy is the area of the two dimensional system
with lengths Lx and Ly and ωc is the same cyclotron frequency defined in section (2.1) which can be written

1Lets remember to the reader that the dictionary defines the word ansatz as an assumption about the form of an unknown
function which is made in order to facilitate solution of an equation or other problem.
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in MKS units as ωc = qB/m, then, the above equality tell us that necessarily the magnetic flux must be
quantized

BA = 2πl
~
q
. (1.13)

Finally, the numbers of states per unit area is the same as the electron density due to Pauli exclusion
principle [35,36] so it can be written as

n =
qB

h
, (1.14)

where we have used the definition of the Plank’s constant as h = 2π~. Substituting this result in the classic
definition of Hall resistivity (1.11) we have that

ρH =
h

q2
, (1.15)

which correspond to the IQHE with quantization index of k = 1 and l = 1. Finally, using an argument of
a density increment they manage to write the equation (1.5) [34]. Alternatively, Robert B. Laughlin used a
gauge invariant argument to try to explain this same quantization [4], further works on this argument were
developed in references [37–41].
The influence of the impurities in the phenomena measurements were analyzed mainly by Prange, which
modeled them as a Dirac’s delta potential [5]. His main result is that due to the imperfections of the material,
there exist localized states in the sample which do not contribute to the final Hall resistance measurements,
however, somehow the non localized states which travels nears the localized ones manage to have a higher
contribution which compensates the no contribution of the localized particles. Again, alternatively, Laughlin
struck again with a gauge invariance argument to analyze the effect of the impurities [42].

Laughlin continued his work trying to explain the FQHE using his many-body wave function hypothesis,
what is now called Laughlin’s wave function, but before we present it to the reader is necessary to inquiry a
little bit more in his work to understand the pathologies it has [43–46]. His start point consisted in dealing
with three two dimensional particles with Coulomb interaction [47], he took advantage of the fact that the
angular momentum eq.(2.130) commutes with any scalar function that depends only of the radius, that is

[L̂z, f(r)] = 0, (1.16)

and knowing that using the symmetric gauge this commutation arguments holds for the whole Hamiltonian
considering the interaction potential, he managed to use Landau’s ansatz [1] to write his solution [43] for the
two and three body problems, the details of this solution can be seen in reference [48]. Then, his approach was
to deal with the interaction potential as if it was a perturbation small enough to apply perturbation theory [49]
which used it to explain FQHE found by Störmer with quantum index k = 1 and l = 3 in eq.(1.7). Afterwards,
Laughlin tried to generalized his hypothesis to a N -body systems by means of Jastrow’s ansatz2 [50] and
even more he used his own ansatz to write down his wave function as [44,51]

ψ(z1, ..., zN ) =
∏
i<j

(zi − zj)m exp

(∑
i

|zi|2

4l2o

)
, (1.17)

where l0 is a constant and zi are the complex coordinates of the particles. This is the trialN -body ground wave
function, that is, for the lowest landau level which Laughlin claimed that can not be degenerated [44], however,
as we have already seen in section (2.2.1) the fact that the angular momentum is conserved implies that the
solution of the Schrödinger’s equation is actually numerable degenerated, more over, in 1984 Tao and Wu have
used Laughlin’s gauge invariance own argument [4] to prove that the ground state must be degenerated3 [52].

2This is contradictory to his previous work since this ansatz applies only for strong interaction forces contrary to perturbation
theory which applies to small ones.

3This lack of coherence is due to the assumption that the conservation of an operator implies that it shares basis with the
Hamiltonian but, as we have shown through this thesis work, that is not true.

6



Quantum Dynamics For Single Charged Particle With Electromagnetic Field and The Consequences Of A New Solution

Further research about the ground state degenerancy were made by Haldene and Rezayi [53] and Su [54]
respectively. One the other hand, this trial wave function allowed Laughlin to explain FQHE only for Hall
conductivities equal to

σH =
1

k

q2

h
, (1.18)

where k is an odd integer. However, one needs to remark that this phenomena is not constrained to only
odd denominators of the conductivity [25, 30, 55]. Besides, the physical interpretation of this phenomenon
using this approach is quite counterintuitive as has been notice by Störmer [23]. Even though if Laughlin’s
hypothesis has its basis in a several body approach, it turns out that its principal conclusion is that the
electrons gather together to build up a bigger quasiparticle4 which has a total charge of a fraction of one of
the individuals electrons that forms it. To have a better picture of this situation, imagine that three electrons
gather together to form a quasiparticle of total charge e∗, despite that each electron has an individual charge
of e = 1.60217663× 10−19(C) it turns out that, for Laughlin, the total charge of the quasiparticle is e∗ = e/3
and therefore the conductivity is a fraction of the inverse of Klitzing’s constant [44]. A generalization
of Laughlin’s trial wave function was made by Jain who constructed a more general trial wave function,
however, the methods used to deduced it are pretty similar to those used by Laughlin, where they only guess
a solution for the Hamiltonian setting the mathematical formalism aside [56–59]. As a continuation of his
research, Laughlin used his ground state trial wave function (1.17) to prove that the resonating-valence-bond
and the fractional quantum Hall effect states are (in his own words) the same thing, which turns out to be
posible due to the creation of quasiparticles obeying fractional statistics, often called anyons 5, which lead
to a new superconductivity hypothesis having its basis in the FQHE [60–63]. However, this anyonic based
hypothesis was refuted by means of muon-spin relaxation (µSR) experiment where the magnetic field produced
by the quasiparticle (and predicted by the theory) should be of ∼ 30(G) but they detected a magnetic field
of around 10% that amount, besides, that measured magnetic field couldn’t be associated to the creation of
anyons, instead, it was due to the anisotropic nature of the muon-nuclear dipolar-interaction [64]. Further
different experimental developments has confirmed this results where they could not detect the existence of
a quasiparticle in their respective set up [65–73]. On the other hand, there are also experimentalist who
claim to have detected a fractional charged quasiparticle [74–76]. Anyway, we must say that FQHE is still
considered an open research problem [77].

To sum up, the quantum Hall effect has two branches, the integer quantum Hall effect, which is characterized
for having a quantized resistivity of the form eq.(1.9) with l = 1, k ∈ Z+ and the fractional quantum Hall
effect, which is characterized for having a quantized resistivity of the form eq.(1.9) with l ∈ Z+ and k = 1.
In general, is also possible to find a mixed phenomena of this two branches having a resistivity as shown in
eq.(1.9). This phenomena appears when a perpendicular electromagnetic field is applied to a two dimensional
electron gas and its temperature is reduced at the point that the systems is in the lowest Landau level. The
integer part is explained as a single particle phenomena, while the fractional part is explained as a several
particle phenomena. Finally, in order to have a new perspective of this phenomena, is mandatory to forget
the old approach that has a lack of mathematical formalisms attached to it coming from the unmeasured use
of ansatzes used to solve the respective partial differential equations.

Throughout all this work we have shown how to work mathematically with the Schrödinger equation that
describes the non-relativistic quantum dynamics of a charged particle under the influence of an electromagnetic
field. However, we have not inquiry about the physical implications about the obtained solutions yet, that
is the main objetive of this section. We will show that a similar phenomenon like the one called Quantum
Hall effect, which appears, experimentally, by the presence of the electromagnetic field in a two dimensional
material at low temperatures and its main characteristic is the resistivity quantization [3], can be obtained

4Etymology: “quasi” and “particle”, used to refer to any entity that has some characteristics of a distinct particle, but
comprises a grouping of multiple particles.

5Etymology: “any” and “on”, used to refer to an elementary particle or particle-like excitation having properties intermediate
between those of bosons and fermions.
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form the solutions found. Nevertheless, we must mention that there exist a couple of cases where this
phenomenon is generated but the physical reasons that gives rise to them are different from each others,
for instance, the Quantum Anomalous Hall effect where the magnetic field is absented, that is B = 0, but
the magnetization of the material is present and the spin-orbit coupling of the particles has influence on the
dynamics of the particles producing a Quantum Hall effect like phenomena [78, 79] and the Quantum Spin
Hall effect that does not require the application of a large magnetic field, non magnetization of the material
but still have a quantized spin-Hall conductance [80]. However, this last two phenomenon are not worked
out through this thesis.

The construction of the present thesis is as follows. In Chapter (2) we give a brief review of the Hamiltonian
we are going to work with, which is the non-relativistic system under the effect of a electromagnetic field.
In section (2.1) we work with the system under the effect of a magnetic field only and such that the
field is described by the Landau’s gauge. After finding a non-separable variable solution, we continue
in section (2.1.1) by analyzing the degeneration of the system which is given by the application of the
conserved operators. Later on, in section (2.2) we proceed by analyzing the same system but using the so
called symmetric gauge, which, even though if classically they describe the same system, it turns out that
Schrödinger’s equation is different from that one described using Landau’s gauge. Followed by the analysis
of the degeneration of this system in section (2.2.1). After settle down the methods to work with this kind
of equations, we move on to the problem where an electromagnetic field is present, this is worked out in
section (2.3) and its degeneration is presented in section (2.3.1). It is important to mention that all the
results are accompanied by their rigorous mathematical details which can be find in the appendices (A,B,C)
respectively. Finally, in chapter (3) we use the obtained results to calculate the current produced by the
particle and explain how could this result be associated to a quantum Hall like phenomena. However, this
last chapter is strongly based on the results obtained on the appendix (D), therefore is recommended to check
it before approaching to this last chapter.

8
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Chapter 2

Hamiltonian for a single charged
particle

It is well known that the non relativistic dynamics of an electric charge motion with the electromagnetic field
is given by the Lorentz’ force

d(mv)

dt
= qE +

q

c
v ×B, (2.1)

where c is the speed of light, m and q are the mass and the charged of the particle, and E and B are the
electric and the magnetic fields. These fields are given in terms of the scalar and vector potential Φ and A
as

E = −∇Φ− q

c

∂A

∂t
, and B = ∇×A. (2.2)

It is known [81] that the dynamics of the charged particle motion is written in terms of these potential as

d

dt

(
mv +

q

c
A
)

= −∇
(
qΦ− q

c
(v ·A)

)
. (2.3)

The canonical momentum and the potential are

p = mv +
q

c
A, (2.4)

and
U = qΦ− q

c
(v ·A), (2.5)

is the generalized potential energy [81], and one can calculate a Hamiltonian for the system as

Ĥ =
1

2m

(
p̂− q

c
A
)2

+ V (2.6)

where V = U + q
c (v ·A). Now, the evolution of an operator f̂ in Heisenberg scheme is given by the following

equation

df̂

dt
=

1

i~
[f̂ , Ĥ] +

∂f̂

∂t
. (2.7)

Using the Hamiltonian (2.6)

Ĥ =
1

2m

((
p̂x −

q

c
Ax

)2

+
(
p̂y −

q

c
Ay

)2

+
(
p̂z −

q

c
Az

)2
)

+ V, (2.8)

and the following relation for any operators A,B, and C given by [AB,C] = A[B,C] + [A,C]B, we see that

Hamiltonian for a single charged particle 9
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[
x̂,
(
p̂x −

q

c
Ax

)2
]

= 2i~
(
p̂x −

q

c
Ax

)
, (2.9)

[
x̂,
(
p̂y −

q

c
Ay

)2
]

= 0, (2.10)

[
x̂,
(
p̂z −

q

c
Az

)2
]

= 0, (2.11)

[x̂, V ] = 0, (2.12)

then, using (2.7), we have that

dx̂

dt
=

1

m

(
p̂x −

q

c
Ax

)
,

dŷ

dt
=

1

m

(
p̂y −

q

c
Ay

)
, and

dẑ

dt
=

1

m

(
p̂z −

q

c
Az

)
. (2.13)

Hence, the modified momentum operators can be written as the above velocity operators times the mass,
that is

π̂x = p̂x −
q

c
Ax, (2.14)

π̂y = p̂y −
q

c
Ay, (2.15)

π̂z = p̂z −
q

c
Az. (2.16)

These known expressions will be useful to analyzing the degeneration of the system later on.

10
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2.1 Hamiltonian with Landau gauge

In this section, we will star our research by focusing on the solutions without electric field and static magnetic
field, that is V = 0, and for different gauge selection.

V = 0, and B(x) = ∇×A(x). (2.17)

Let’s begin analyzing the case when the magnetic field has constant magnitude, B, and pointing along z
direction positively, that is, B = Bk̂. One possible selection of gauge describing a field of this characteristics
is the so called Landau’s gauge which is written as follows

A = B(−y, 0, 0), (2.18)

then the Hamiltonian (2.8) can be written as

Ĥ =
1

2m

((
p̂x +

qB

c
y

)2

+ p̂2
y + p̂2

z

)
. (2.19)

Now, by using the definition of the cyclotron frequency ωc = qB/mc and rearranging terms, we get

Ĥ =
1

2m

(
p̂2
x + p̂2

y + p̂2
z +mωc(p̂xy + yp̂x) +m2ω2

cy
2
)
, (2.20)

which, due to the fact that [p̂x, y] = 0, this Hamiltonian is written as

Ĥ =
1

2m

(
p̂2
x + p̂2

y + p̂2
z + 2mωcyp̂x +m2ω2

cy
2
)
. (2.21)

Now, the time independence of this Hamiltonian allow us to separate the time dependence part from the
spatial dependence in the Scrödinger’s equation,

i~
∂Ψ

∂t
= ĤΨ, (2.22)

where Ψ(x, y, z, t) is the wave function. This separation is getting by choosing this wave function of the form

Ψ(x, y, z, t) = ψ(x, y, z)e−i
E
~ t and reducing the problem to and the following eigenvalue problem

Ĥψ = Eψ, (2.23)

or

− ~
2

2m

(
∂2ψ

∂x2
+
∂2ψ

∂y2
+ i2

mωc
~

y
∂ψ

∂x
− m2ω2

c

~2
y2ψ

)
− ~2

2m

∂2ψ

∂z2
= Eψ, (2.24)

where we have use explicitly the operators p̂j = −i~∂/∂j with j = x, y, z. A careful examination of this
partial differential equation shows us that the “z” direction is the only spatial coordinate separable. In fact,
by proposing a solution of (2.24) of the form

ψ(x, y, z) = ϕ(x, y)g(z), (2.25)

and dividing by the same solution, one gets

− ~
2

2m

(
1

ϕ

∂2ϕ

∂x2
+

1

ϕ

∂2ϕ

∂y2
+

1

ϕ
i2
mωc
~

y
∂ϕ

∂x
− m2ω2

c

~2
y2

)
− ~2

2m

1

g

∂2g

∂z2
= E (2.26)

Hamiltonian for a single charged particle 11
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which brings about the equations

− ~
2

2m

(
∂2ϕ

∂x2
+
∂2ϕ

∂y2
+ i2

mωc
~

y
∂ϕ

∂x
− m2ω2

c

~2
y2ϕ

)
= E1ϕ, (2.27)

and

− ~
2

2m

∂2g

∂z2
= E2g, (2.28)

being E = E1 + E2. The solution for the equation (2.28) is straightforward

g(z) = ei
√

2mE2
~ z. (2.29)

Therefore, we will look for a way to solve this equation, and one very useful method is the Fourier transformation.
For this case we will use the Fourier transform acting over the variable x, that is

ϕ(κ, y) = Fx(φ) =
1√
2π

∫
R

eiκxφ(x, y)dx, (2.30)

applying it to equation (2.27)

− ~
2

2m

(
Fx
(
∂2ϕ

∂x2

)
+ Fx

(
∂2ϕ

∂y2

)
+ i2

mωc
~

yFx
(
∂ϕ

∂x

)
− m2ω2

c

~2
y2Fx (ϕ)

)
= E1Fx(ϕ), (2.31)

and using the identity (A.4) and rearranging we can write

∂2ϕ

∂y2
− m2ω2

c

~2
y2ϕ− κ2ϕ+ 2

mωc
~

yκϕ = −2mE1

~2
ϕ, (2.32)

then, we can complete the squared binomial as follows

∂2ϕ

∂y2
− m2ω2

c

~2

(
y − ~

mωc
κ

)2

ϕ = −2mE1

~2
ϕ, (2.33)

of course the above equation is nothing else than a displaced harmonic oscillator in the Fourier space (κ, y).
We continue by making the change of variable

ξ =

√
mωc
~

(
y − ~

mωc
κ

)
, (2.34)

then, the differential operator changes as

∂2

∂y2
=
mωc
~

∂2

∂ξ2
, (2.35)
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and the equations takes the next form

∂2ϕ

∂ξ2
− ξ2ϕ = −2E1

~ωc
ϕ, (2.36)

and has the solution of

ϕn(ξ) =
1√

2nn!

(mω
π~

)1/4

exp

(
−ξ

2

2

)
Hn(ξ), (2.37)

where Hn are the Hermite polynomial and eigenvalues of

E1 = En = ~ωc
(
n+

1

2

)
. (2.38)

Since our original equation was in the real space (x, y), is necessary to perform the inverse of Fourier transform
of the above expression defined as

F−1
κ (ϕn(ξ)) =

1√
2π

∫
R

e−iκxϕn(ξ)dκ, (2.39)

then from the expression (2.34)

κ =
mωc
~

y −
√
mωc
~

ξ, (2.40)

dκ = −
√
mωc
~

dξ, (2.41)

thus, the solution in the real space is ϕ(x, y) = F−1
κ (ϕ(ξ)), hence, we can write

ϕn(x, y) = −
√
mωc
~

exp
(
−imωc

~
xy
) 1√

2π

∫
R

exp

(
i

√
mωc
~

xξ

)
ϕn(ξ)dξ, (2.42)

using the result from appendix (A.1) equation (A.16) that shows that the Fourier transform of a harmonic
oscillator is another harmonic oscillator we can write down the solution in the real space as

ϕn(x, y) = −
√
mωc
~

exp
(
−imωc

~
xy
)
φn

(√
mωc
~

x

)
, (2.43)

where it was define the function

φn(χ) =
1√

2nn!

(mωc
π~

)1/4

exp

(
−χ

2

2

)
Hn(χ). (2.44)
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Then we can write the eigenvalue solution as

ψn(x, y, z) = A exp

(
−imωc

~
xy + i

√
2mE2

~
z

)
φn

(√
mωc
~

x

)
, (2.45)

where A is a normalization constant. However, observe that the the function φn is already normalized, that
is

∞∫
−∞

∣∣∣∣φn(√mωc
~

x

) ∣∣∣∣2dx = 1, (2.46)

then the normalization condition is written as follows,

∞∫
−∞

∞∫
−∞

∞∫
−∞

|ψn(x, y, z)|2dxdydz = 1, (2.47)

anyway, since the variables y and z appears only in the phase, the integration over all the space will give us
an indetermination, therefore we use the Born normalization [49] for this variables, that is, we assume that
the particle is in a finite box of lengths (Lx, Ly, Lz) but with the condition that the length Lx is large enough
such that can be considered infinity, then the normalization condition is as follows

Lz/2∫
−Lz/2

Ly/2∫
−Ly/2

∞∫
−∞

|ψn(x, y, z)|2dxdydz = 1, (2.48)

then this implies that A = 1/
√
LyLz and the eigenfunctions are written as

ψn(x, y, z) =
1√
LyLz

exp

(
−imωc

~
xy + i

√
2mE2

~
z

)
φn

(√
mωc
~

x

)
, (2.49)

with eigenvalues of

En = ~ωc
(
n+

1

2

)
+ E2. (2.50)

Finally, we must note that the energies are continuos in the z direction. However, we can assume Born’s
condition that the function must be periodic in the z coordinate, that is ψn(x, y, z + Lz) = ψn(x, y, z) one
can write

En,n′ = ~ωc
(
n+

1

2

)
+

1

2m

(
2π~
Lz

n′
)2

, n, n′ ∈ Z+. (2.51)
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2.1.1 About the degeneration of the solution with Landau’s gauge

Until now, it seems like we are done with the whole situation and the only thing left is to build up the general
solution by doing the superposition of all the posible states, however, there is still one thing left and is the
study of the system’s degeneration. To begin with it, is useful to start with the expression (2.21) but, for
simplicity, limited to the two dimensional case, that is, on the plane (x, y)

Ĥ =
1

2m

(
p̂2
x + p̂2

y + 2mωcyp̂x +m2ω2
cy

2
)
, (2.52)

then we recall the following commutation identities, first lets denote the positions as x = x1, y = x2 and
z = z3 and the momentum operators as p̂x = p̂1, p̂y = p̂2 and p̂z = p̂3, then we can write

[p̂i, p̂j ] = 0, i, j = 1, 2, 3, (2.53)

[xl, p̂j ] = i~δl,j , l, j = 1, 2, 3, (2.54)

where δl,j is Kronecker’s delta. Then, being Â, B̂ and Ĉ three operators, it follows that

[AB,C] = A[B,C] + [A,C]B, (2.55)

using this identities is easy to prove that
[p̂x, Ĥ] = 0. (2.56)

This implies that the operator p̂x is conserved. Normally one can believe that if an operator is conserved,
then, necessarily it shares basis with the Hamiltonian, or in other words, the action of the conserved operator
on the eigenfunctions of the Hamiltonian is such that the resulting function is proportional to itself, that
is, being ψ an eigenfunction of the Hamiltonian, Ĥψ = Eψ then, the action of the conserved operator on
the function is such that p̂xψ ∼ ψ. However, this assumption is not generally correct and the reason of it
is because one can not simply assume how the action of the operators will be. To clarify this situation lets
rewrite expression (2.56) acting on an eigenfunction ψ

Ĥ (p̂xψ) = p̂x

(
Ĥψ

)
, (2.57)

then, we can write

Ĥ (p̂xψ) = Ep̂xψ, (2.58)

of course the above expression is satisfied if one assume that p̂xψ = Aψ where A is a constant, however, there
is a second option that can satisfy the above equality too, that is that the action of the conserved operator
on the function gives a different function (denoted by f) who is still an eigenfunction of the Hamiltonian.
That is, if

p̂xψ = f, (2.59)

then
Ĥf = Ef. (2.60)
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This second observation is, in fact, our current situation. In particular, the action of p̂x over the solution
(2.49) when z = 0 is as follows

p̂xψn(x, y) = −mωcyψn −
i~√
LyLz

exp
(
−imωc

~
xy
) ∂

∂x
φn

(√
mωc
~

x

)
, (2.61)

now, we use the following expression to calculate the harmonic oscillator derivative

∂

∂ξ
φn(ξ) = −ξφn +

√
2nφn−1, (2.62)

using the change of variable, ξ =
√

mωc
~ x, we can write

p̂xψn(x, y) = mωc(ix− y)ψn − i
√

2nmωc~ψn−1 (2.63)

thus, as we previously said, by applying the conserved operator we have a new function fn(x, y) = p̂xψn(x, y)
which is also an eigenfunction. This last statement can be proved by substituting this new function in the
Hamiltonian (2.52)

Ĥ =
1

2m

(
p̂2
x + p̂2

y + 2mωcyp̂x +m2ω2
cy

2
)
. (2.64)

To complete this task is useful to write down some expressions

p̂x(xψn) = −i~ψn + xp̂xψn, (2.65)

p̂2
x(xψn) = −2i~p̂xψn + xp̂2

xψn (2.66)

and
p̂2
y(yψn) = −2i~p̂yψn + yp̂2

yψn, (2.67)

then applying the Hamiltonian to the new function we can write

Ĥfn = mωc

(
iĤ(xψn)− Ĥ(yψn)

)
− i
√

2nmωc~Ĥψn−1 (2.68)

using the equalities (2.65), (2.66) and (2.67) is possible to write down the following results

Ĥ(xψn) = xĤψn + ~ωcxψn −
~
m

√
2nmωc~ψn−1, (2.69)

and
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Ĥ(yψn) = yĤψn + i~ωcxψn, (2.70)

substituting them in expression (2.68)

Ĥfn = mωc

(
ixĤψn + i~ωcxψn − i

~
m

√
2nmωc~ψn−1 − yĤψn − i~ωcxψn

)
− i
√

2nmωc~Ĥψn−1 (2.71)

using the fact that ψn has eigenvalues of

En = ~ωc
(
n+

1

2

)
, (2.72)

and rearranging, we write down the expression

Ĥfn = Enmωc(ix− y)ψn − i
√

2nmωc~(En−1 + ~ωc)ψn−1, (2.73)

then realizing that

En−1 + ~ωc = En, (2.74)

we have

Ĥfn = En

(
mωc(ix− y)ψn − i

√
2nmωc~ψn−1

)
, (2.75)

hence, we have proved that fn(x, y) is another eigenfunction, that is

Ĥfn = Enfn. (2.76)

Finally, one can make the observation that the expression (2.56) can be generalized to any number of
applications of the operator p̂x. So, being j ∈ Z+ we denote the j−application of an operator as

p̂jx = p̂x ◦ p̂x ◦ ...p̂x, j-times, (2.77)

using the identity (2.55) is easy to prove that

[p̂jx, Ĥ] = 0, (2.78)
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consequently we have

Ĥ
(
p̂jxψ

)
= Ep̂jxψ. (2.79)

This means that we can have a numerable set of j eigenfunctions, as many as times we apply the conserved
operator. First, we are going to denote the new generated function as

f jn(x, y) = p̂jxψn, j = 0, 1, 2, ... (2.80)

where the definition p̂0
x = 1 was made. Then, applying j-times more the operator p̂x to the expression (2.63)

we have

f j+1
n = mωcp̂

j
x ((ix− y)ψn)− i

√
2nmωc~p̂jxψn−1 (2.81)

using the formula for the generalization of the derivative of the product of two functions

dj

dxj
(f(x)g(x)) =

j∑
m=0

(
j

m

)
dj−m

dxj−m
(f(x))

dm

dxm
(g(x)) (2.82)

where (
j

m

)
=

j!

m!(j −m)!
, (2.83)

is the binomial coefficient. A careful analysis show us that the only not zero terms of the sum are the ones
when m = j, j − 1, we can write

p̂jx ((ix− y)ψn) = (ix− y)p̂jxψn + ~jp̂j−1
x ψn, (2.84)

finally, we got the following expression for the eigenfunctions

f j+1
n (x, y) = mωc

(
~jf j−1

n + (ix− y)f jn
)
− i
√

2nmωc~f jn−1. (2.85)

To end with this section we must say that the general solution of the two dimensional system can be written
as

Ψ(x, y) =
∑
n,j

Cn,jf
j
n. (2.86)
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2.1.2 Operators associated to the index of degeneration j for Landau’s gauge

In the appendix (A.2) is shown that the functions (2.85) f j+1
n (x, y) satisfy the eigenvalue equation

Ĥf j+1
n = Enf

j+1
n , En = ~ωc

(
n+

1

2

)
, (2.87)

if the expression

mωc~jf j−1
n +mωcixf

j
n + ip̂yf

j
n = 0, (2.88)

is satisfied. A quick corroboration of the above equation can be made by applying the operator p̂y to the
equation (2.49)

p̂yψn = −mωcxψn, (2.89)

then, we apply the operator p̂x j-th times, use the fact that [p̂y, p̂
j
x] = 0 and the definition (2.80) to write

down the following expression

p̂yf
j
n = −mωcp̂jx(xψn), (2.90)

finally, we use the formula (2.82) and realize that the only no zero terms are the ones when m = j, j − 1 and
we obtain

p̂yf
j
n = −mωc(xf jn − i~jf j−1

n ), (2.91)

which is the expression (2.88). We can rewrite the above expression in a very curios way to reveal a new
eigenvalue equality

(p̂y +mωcx)p̂xf
j−1
n = imωc~jf j−1

n , (2.92)

or making j = j′ + 1 (and renaming j′ as j), it follows that

(p̂y +mωcx)p̂xf
j
n = imωc~(j + 1)f jn. (2.93)

The above equality define us a new operator that has imaginary eigenvalues, therefore the operator (p̂y +
mωcx)p̂x is not Hermitian. Is not difficult to prove that this new operator is, in fact, conserved, however if
one wants to know about the physical meaning of this operator, is necessary to inquiry a little bit more.
Using our initial gauge (2.18)

A = B(−y, 0, 0), (2.94)

which define a constant magnetic field in the positive z direction

B = ∇×A = Bk̂, (2.95)

Hamiltonian for a single charged particle 19



Quantum Dynamics For Single Charged Particle With Electromagnetic Field and The Consequences Of A New Solution

then, using the results (2.14), (2.15) and (2.16) we can define the momentum operators as

π̂x = p̂x +mωcy, π̂y = p̂y, π̂z = p̂z (2.96)

which can be used to build up the Hamiltonian operator as follows

Ĥ =
1

2m

(
π̂2
x + π̂2

y + π̂2
z

)
. (2.97)

On the other hand, we can select the alternative Landau’s gauge

A′ = B(0,−x, 0) (2.98)

which define a constant magnetic field of the same magnitud but in opposite direction, that is

B′ = ∇×A′ = −Bk̂, (2.99)

similarly, using the results (2.14), (2.15) and (2.16), this will define us a set of momentum operators

π̂′x = p̂x, π̂′y = p̂y +mωcx, π̂′z = p̂z, (2.100)

then, using the commutation properties (2.53) and (2.54), is easy to prove that the next set of commutation
relations holds

[π̂′x, π̂x] = [π̂′x, π̂y] = [π̂′x, π̂z] = 0, (2.101)

[π̂′y, π̂x] = [π̂′y, π̂y] = [π̂′y, π̂z] = 0, (2.102)

and
[π̂′z, π̂x] = [π̂′z, π̂y] = [π̂′z, π̂z] = 0. (2.103)

With the aid of the above relations and (2.55) is straightforward to prove that

[π̂′x, Ĥ] = [π̂′y, Ĥ] = [π̂′z, Ĥ] = 0. (2.104)

Hence, the eigenvalue relation (2.93) can be written as

π̂′yπ̂
′
xf

j
n = imωc~(j + 1)f jn, (2.105)
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and using the results (2.104) is easy to prove that the operator Ô = π̂′yπ̂
′
x is conserved,

[Ô, Ĥ] = [π̂′yπ̂
′
x, Ĥ] = π̂′y[π̂′x, Ĥ] + [π̂′y, Ĥ]π̂′x = 0. (2.106)

Therefore, we can see that there is a relation between the degeneration of the system and the inversion of the
direction of the magnetic field. Finally, one must point out that due to the discussion of the prior subsection,
one could think that if the operator π̂′y is also conserved then it must be another eigenfunction generator,
like in the case of π̂′x, however, is not difficult to prove that

π̂′yψn(x, y) = 0, (2.107)

hence, we see that it does not generate any new function.

2.1.3 Summary of the results with Landau’s gauge

To end with the analysis of the Hamiltonian with Landau’s gauge, we present the final results in a brief way.
Being Landau’s gauge

A = B(−y, 0, 0), (2.108)

the Hamiltonian is

Ĥ =
1

2m

(
(p̂x +mωcy)

2
+ p̂2

y + p̂2
z

)
, where ωc =

qB

mc
, (2.109)

the solutions of Schrödinger’s eigenvalue equation are written as

f j+1
n,n′(x, y, z) = f j+1

n (x, y) exp

(
i
2π

Lz
n′z

)
, (2.110)

where

f j+1
n (x, y) = mωc

(
~jf j−1

n + (ix− y)f jn
)
− i
√

2nmωc~f jn−1, (2.111)

where the following definitions were made

f0
n(x, y) =

1√
LyLz

exp
(
−imωc

~
xy
)
φn

(√
mωc
~

x

)
, (2.112)

f jn(x, y, z) = p̂jxf
0
n, j = 0, 1, 2, ... (2.113)

and

φn(χ) =
1√

2nn!

(mωc
π~

)1/4

exp

(
−χ

2

2

)
Hn(χ), (2.114)
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is the harmonic oscillator solution. The prior expressions satisfies the couple of eigenvalue

Ĥf jn,n′ = En,n′f
j
n,n′ , (2.115)

where

En,n′ = ~ωc
(
n+

1

2

)
+

1

2m

(
2π~
Lz

n′
)2

, n, n′ ∈ Z+. (2.116)

and

π̂′yπ̂
′
xf

j
n,n′ = imωc~(j + 1)f jn,n′ , (2.117)

where
π̂′x = p̂x, π̂′y = p̂y +mωcx. (2.118)

Therefore, the general solution of Schrödinger’s equation is

Ψ(x, y, z, t) =
∑
n,n′,j

Cn,n′,jf
j
n(x, y) exp

(
i
2π

Lz
n′z − iEn,n

′

~
t

)
, (2.119)

where Cn,n′,j are complex constants.
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2.2 Hamiltonian with Symmetric gauge

It is known that the selection of the gauge is not unique, one can choose A′ = A +∇S, where S is a scalar
function. Note that if we choose

A =
B

2
(−y, x, 0), (2.120)

the description of the magnetic field is the same than in the prior case where we chose of Landau’s gauge, that
is, it describes a constant magnetic field of magnitud B along the positive z direction, or mathematically,

B = ∇×A = Bk̂. (2.121)

However, even though if it describes the same classical system, it turns out that the quantum systems are
quite different. The selection of the gauge as (2.120) is known as symmetric gauge. Using this vector potential
the Hamiltonian is written as

Ĥ =
1

2m

((
p̂x +

mωc
2

y
)2

+
(
p̂y −

mωc
2

x
)2

+ p̂2
z

)
. (2.122)

Similar to the prior case, is not difficult to corroborate that Schrödinger’s equation

i~
∂ψ

∂t
= Ĥψ, (2.123)

is separable in both variables time and z coordinate, therefore, we can write the solution as

ψ(x, y, z, t) = ϕ(x, y) exp

(
i

√
2mE2

~
z − iE

~
t

)
, (2.124)

where
Ĥψ = Eψ, E = E1 + E2, (2.125)

and, likewise the prior case, we can use Born periodicity condition in z direction and determine the energy
E2 as

E2 =
1

2m

(
2π~
Lz

n′
)2

, n′ ∈ Z+. (2.126)

By doing this we can focus in the search of the solution on the (x, y) plane which is describe by the two
dimensional Hamiltonian

Ĥ =
1

2m

((
p̂x +

mωc
2

y
)2

+
(
p̂y −

mωc
2

x
)2
)
, (2.127)
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such that
Ĥϕ = E1ϕ. (2.128)

By rewriting the squared binomials terms and using (2.54) the Hamiltonian takes the form of

Ĥ =
1

2m

(
p̂2
x + p̂2

y −mωcL̂z +
m2ω2

c

4
(x2 + y2)

)
, (2.129)

where we used the definition of the angular momentum operator in z direction, that is

L̂z = xp̂y − yp̂x. (2.130)

Hence, substituting the differential form of the operators the eigenvalue partial differential equation can be
written as

− ~
2

2m

(
∂2ϕ

∂x2
+
∂2ϕ

∂y2
− imωc

~

(
x
∂ϕ

∂y
− y ∂ϕ

∂x

)
− m2ω2

c

4~2
(x2 + y2)ϕ

)
= E1ϕ, (2.131)

note that this expression can not be separated in cartesian, (x, y), nor polar coordinates, (r, θ), therefore,
is necessary to choose a couple of independent variable that could help to solve the above equation. The
problem is simplified if we work in the complex plane, that is, we make the change of variable

z = x+ iy, z∗ = x− iy, (2.132)

with this selection of variables the differential operators are changed as

∂

∂x
=

∂

∂z
+

∂

∂z∗
, (2.133)

and

∂

∂y
= i

(
∂

∂z
− ∂

∂z∗

)
, (2.134)

then, the following expressions can be calculated

∂2

∂x2
+

∂2

∂y2
= 4

∂2

∂z∂z∗
, (2.135)

x
∂

∂y
− y ∂

∂x
= i

(
z
∂

∂z
− z∗ ∂

∂z∗

)
, (2.136)
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then, defining the constant

α =
mωc
4~

, (2.137)

the eq.(2.131) takes the form

−2~2

m

(
∂2ϕ

∂z∂z∗
+ α

(
z
∂ϕ

∂z
− z∗ ∂ϕ

∂z∗

)
− α2zz∗ϕ

)
= E1ϕ. (2.138)

Following up on this, we can simplify even more the problem by proposing the solution of the form

ϕ(z, z∗) = e−αzz
∗
φ(z, z∗), (2.139)

substituting this in the above partial differential equation, simplifying and rearranging, one can write

∂2φ

∂z∂z∗
− 2αz∗

∂φ

∂z∗
=

(
α− mE1

2~2

)
φ. (2.140)

This last expression is separable if we propose the function φ to be written as

φ(z, z∗) = f(z)g(z∗), (2.141)

substituting in the last expression we have that

∂f

∂z

∂g

∂z∗
− 2αz∗f

∂g

∂z∗
=

(
α− mE1

2~2

)
fg, (2.142)

dividing by f(∂g/∂z∗)

1

f

∂f

∂z
= 2αz∗ +

(
α− mE1

2~2

)
g
∂g
∂z∗

. (2.143)

Continuing with the analysis, note that the left hand side of the above expression as well as the right hand
side are complex expressions with domain and image in the complex numbers, that is, both expressions takes
elements in the complex plane C and maps them to the complex plane again C,

1

f

∂f

∂z
: C→ C, (2.144)

2αz∗ +

(
α− mE1

2~2

)
g
∂g
∂z∗

: C→ C, (2.145)
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therefore, the expression (2.143) is satisfied if is equal to a complex constant called λ, then we have the
following couple of differential equations

∂f

∂z
= −λf, (2.146)

and

2αz∗
∂g

∂z∗
+

(
α− mE1

2~2

)
g = −λ ∂g

∂z∗
. (2.147)

Note that we have used a minus sign for the constant λ which has no other purpose than the mere esthetic in
the final form of the solution. The solutions of the above couple of equations is obtain in a straightforward
integration and the reader can corroborate that the following solutions are obtained

f(z) = e−λz, (2.148)

and

g(z∗) =

(
2αz∗ + λ

) 1
2α (mE1

2~2 −α)
. (2.149)

Now that we have the eigenfunction, we need to determine the energy E1. To complete this task, we continue
analyzing the expression (2.147), we will now study it as a power series of the variable z∗, that is

g(z∗) =

∞∑
n=0

an(z∗)n, (2.150)

where an ∈ C. Then the first derivative can be written as

∂g

∂z∗
=

∞∑
n=0

nan(z∗)n−1 =

∞∑
n=0

(n+ 1)an+1(z∗)n, (2.151)

substituting (2.150), (2.151) in (2.147) and rearranging the result we find out that

∞∑
n=0

(
λ(n+ 1)an+1 +

(
2αn+ α− mE1

2~2

)
an

)
(z∗)n = 0 (2.152)

therefore, this expression give us the the following recurrence relation for the coefficients an

an+1 =
mE1

2~2 − 2αn− α
λ(n+ 1)

an. (2.153)

From this last expression we can see that the asymptotic behavior is such that for n >> 1 we have

an+1

an
→ −2α

λ
(2.154)
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this means that at some n = n0 >> 1 the coefficients can be written as an0+1 ∼ −2αan0/λ and the series
(2.150) takes the form of

g(z∗) =

n0∑
n=0

an(z∗)n + an0

∞∑
n=n0+1

(
−2α

λ

)n
(z∗)n, (2.155)

this serie diverges when |2αz∗|/|λ| > 1. Therefore, in order to have polynomial solutions, we need to cut off
the series (2.153), this can be done by doing

mE1

2~2
− 2αn− α = 0, (2.156)

substituting eq.(2.137) and solving for E1 we have that

E1 = ~ωc
(
n+

1

2

)
. (2.157)

Finally, using this result in eq. (2.149) we have that

g(z∗) = (2αz∗ + λ)n, (2.158)

and the solution in cartesian coordinates is

ϕn(x, y) = An exp
(
−α(x2 + y2)− λ(x+ iy)

)(
2α(x− iy) + λ

)n
, (2.159)

where An is the normalization constant and is defined as

An =
e−|λ|

2/4α√
(2α)n−1πn!

, (2.160)

the details of the calculation of this constant can be seen in appendix (B.1).

2.2.1 About the degeneration of symmetric gauge and its eigenfunctions generators

Similarly as we did in section (2.1.1), we look for conserved operators such that they can act as eigenfunctions
generators. From the expression (2.129)

Ĥ =
1

2m

(
p̂2
x + p̂2

y −mωcL̂z +
m2ω2

c

4
(x2 + y2)

)
, (2.161)

is easy to prove that the angular momentum L̂z is conserved, that is
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[L̂z, Ĥ] = 0. (2.162)

However, an interesting situation comes up for this system. From the discussion in section (2.1.2) we could
ask, what would happen with the momentum operators when the magnetic field direction is inverted?, that
is, for the gauge used here (2.120)

A =
B

2
(−y, x, 0), (2.163)

the momentum operators defined by equations (2.14) and (2.15) takes the form of

π̂x = p̂x +
mωc

2
y, π̂y = p̂y −

mωc
2

x. (2.164)

Then, the gauge that describes a magnetic field of the same magnitud but oposite direction, that is,

B = ∇×A′ = −Bk̂, (2.165)

is given by

A′ =
B

2
(y,−x, 0), (2.166)

en define us, via the equalities (2.14) and (2.15), the following momentum operators

π̂′x = p̂x −
mωc

2
y, π̂′y = p̂y +

mωc
2

x, (2.167)

and the following commutation relations can be calculated using the properties (2.53) and (2.54)

[π̂′x, π̂x] = [π̂′x, π̂y] = 0, (2.168)

and

[π̂′y, π̂x] = [π̂′y, π̂y] = 0. (2.169)

Note that the Hamiltonian (2.129) can be written using the momentum operators as follows

Ĥ =
1

2m

(
π̂2
x + π̂2

y

)
, (2.170)

using this last expression along with the property (2.55) is straightforward calculation to deduce that

[π̂′x, Ĥ] = [π̂′y, Ĥ] = 0, (2.171)
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in other words, similar to the prior case when Landau’s gauge was used, the inversion of the magnetic fields
direction define the conserved momentum operators. Therefore, we have three conserved operators that are,
actually, eigenfunction generators. The operator π̂′x applied j-th times to the expression (2.159), that is,

(π̂′x)jϕn(x, y) = f jn(x, y), j = 0, 1, 2... (2.172)

where the definition ϕn(x, y) = f0
n(x, y) was made, gives the expression

f j+1
n =

mωc
2

(
(ix− y)f jn + j~f j−1

n

)
+ i~λf jn − i

√
mωc

2
~nf jn−1. (2.173)

The operator π̂′y applied j-th times to the expression (2.159), that is,

(π̂′y)jϕn(x, y) = gjn(x, y), j = 0, 1, 2... (2.174)

where the definition ϕn(x, y) = g0
n(x, y) was made, gives the expression

gj+1
n =

mωc
2

(
(x+ iy)gjn + j~gj−1

n

)
− ~λgjn −

√
mωc

2
~ngjn−1. (2.175)

Finally, the operator L̂z applied j-th times to the expression (2.159), that is,

(L̂z)
jϕn(x, y) = Ljn(x, y), j = 0, 1, 2... (2.176)

where the definition ϕn(x, y) = L0
n(x, y) was made, gives the expression

Lj+1
n =

j∑
m=0

(
−~λ(x+ iy)cjmLmn −

√
mωc~n

2
(x− iy)djmLmn−1

)
. (2.177)

The details of the calculations of the eigenfunctions are shown in the appendix (B.2). All the above expressions
satisfies the eigenvalue equation given by the Hamiltonian (2.129) with eigenvalues (2.157)

Ĥf jn = Enf
j
n, (2.178)

Ĥgjn = Eng
j
n, (2.179)

and
ĤLjn = EnLjn. (2.180)

Besides, similarly as we did in the case where we used the Landau’s gauge, it is possible to find a second
eigenvalue expression regarding the index of degeneration j. In the appendix (B.4) is shown that the
commutation relation holds (B.93)
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[π̂′y, (π̂
′
x)j+1] = i~mωc(j + 1)(π̂′x)j . (2.181)

applying it to the eigenfunction (2.159) and using the definition (2.172)

π̂′y(π̂′x)f jn − (π̂′x)j+1π̂′yf
0
n = i~mωc(j + 1)f jn, (2.182)

then, from the eigenfunctions (2.173) and (2.175) for j = 0, is not difficult to figure out that

π̂′yf
0
n = −2~λf0

n − i(π̂′x)f0
n. (2.183)

hence, substituting this last expression in (2.182) we can write the second eigenvalue equation as

(π̂′y + iπ̂′x + 2~λ)π̂′xf
j
n = i~mωc(j + 1)f jn. (2.184)

This last expression define a new operator

Ô1 = (π̂′y + iπ̂′x + 2~λ)π̂′x, (2.185)

and using the commutation identities (2.168), (2.169) and (2.55) is straightforward to prove that this operator
is conserved, that is

[Ô1, Ĥ] = 0. (2.186)

Alternatively, the commutation (B.96) can be used to get a second eigenvalue expression for the functions
(2.175)

[(π̂′y)j+1, π̂′x] = i~mωc(j + 1)(π̂′y)j , (2.187)

using (2.183) knowing that f0
n = g0

n one can realize that

(iπ̂′y − π̂′x + 2i~λ)π̂′yg
j
n = i~mωc(j + 1)gjn, (2.188)

which define a new operator
Ô2 = (iπ̂′y − π̂′x + 2i~λ)π̂′y, (2.189)

that is also conserved, that is,
[Ô2, Ĥ] = 0. (2.190)

We must point out at some observations, note that the eigenvalues of the operators Ô1 and Ô2 are the same
eigenvalues given by (2.105), its eigenvalues are imaginaries, therefore, there are not Hermitian operators and
is posible to express the angular momentum in terms of the operators (2.167) as follows
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L̂z = xπ̂′y − yπ̂′x −
mωc

2
(x2 + y2). (2.191)

2.2.2 Summary of the results with the symmetric gauge

To conclude with this analysis, we present the final results in a brief way. Being the symmetric gauge (2.120)

A =
B

2
(−y, x, 0), (2.192)

this define the Hamiltonian

Ĥ =
1

2m

(
Ĥ+ p̂2

z

)
, (2.193)

where

Ĥ =
1

2m

(
p̂2
x + p̂2

y −mωcL̂z +
m2ω2

c

4
(x2 + y2)

)
. (2.194)

Making the definition ϕn(x, y) = f0
n(x, y) = g0

n(x, y) = L0
n(x, y) where,

ϕn(x, y) =
e−|λ|

2/4α√
(2α)n−1πn!

exp
(
−α(x2 + y2)− λ(x+ iy)

)(
2α(x− iy) + λ

)n
, (2.195)

the degeneration for the two dimensional Hamiltonian, Ĥ, are given by the application of the three conserved
operators

π̂′x = p̂x −
mωc

2
y, π̂′y = p̂y +

mωc
2

x, L̂z = xp̂y − yp̂x (2.196)

which define us the set of eigenfunctions

(π̂′x)jϕn(x, y) = f jn(x, y), j = 0, 1, 2... (2.197)

(π̂′y)jϕn(x, y) = gjn(x, y), j = 0, 1, 2... (2.198)

(L̂z)
jϕn(x, y) = Ljn(x, y), j = 0, 1, 2... (2.199)

or, written explicitly
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f j+1
n =

mωc
2

(
(ix− y)f jn + j~f j−1

n

)
+ i~λf jn − i

√
mωc

2
~nf jn−1, (2.200)

gj+1
n =

mωc
2

(
(x+ iy)gjn + j~gj−1

n

)
− ~λgjn −

√
mωc

2
~ngjn−1, (2.201)

and

Lj+1
n =

j∑
m=0

(
−~λ(x+ iy)cjmLmn −

√
mωc~n

2
(x− iy)djmLmn−1

)
, (2.202)

where all the above expressions satisfies the eigenvalue equation

Ĥf j+1
n = (E1)nf

j+1
n , Ĥgj+1

n = (E1)ng
j+1
n , ĤLj+1

n = (E1)nLj+1
n (2.203)

having the eigenvalues

(E1)n = ~ωc
(
n+

1

2

)
, (2.204)

besides, a second eigenvalue equation regarding the index of degeneration, j, is satisfied

(π̂′y + iπ̂′x + 2~λ)π̂′xf
j
n = i~mωc(j + 1)f jn (iπ̂′y − π̂′x + 2i~λ)π̂′yg

j
n = i~mωc(j + 1)gjn. (2.205)

Therefore, the solutions for the Hamiltonian (2.193), can be written as

f j+1
n,n′(x, y, z) = f j+1

n (x, y) exp

(
i
2π

Lz
n′z

)
, (2.206)

gj+1
n,n′(x, y, z) = gj+1

n (x, y) exp

(
i
2π

Lz
n′z

)
, (2.207)

and

Lj+1
n,n′(x, y, z) = Lj+1

n (x, y) exp

(
i
2π

Lz
n′z

)
, (2.208)

such that
Ĥf j+1

n,n′ = En,n′f
j+1
n,n′ , Ĥgj+1

n,n′ = En,n′g
j+1
n,n′ , ĤLj+1

n,n′ = En,n′Lj+1
n,n′ . (2.209)

having the eigenvalues
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En,n′ = ~ωc
(
n+

1

2

)
+

1

2m

(
2π~
Lz

n′
)2

, n, n′ ∈ Z+. (2.210)

Finally, the general solution for time dependent Schrödinger’s equation can be written using any of the
degenerated eigenfunctions

Ψ(x, y, z, t) =
∑
n,n′,j

An,n′,jf
j
n(x, y) exp

(
i
2π

Lz
n′z − iEn,n

′

~
t

)
, (2.211)

or

Ψ(x, y, z, t) =
∑
n,n′,j

Bn,n′,jg
j
n(x, y) exp

(
i
2π

Lz
n′z − iEn,n

′

~
t

)
, (2.212)

or

Ψ(x, y, z, t) =
∑
n,n′,j

Cn,n′,jLjn(x, y) exp

(
i
2π

Lz
n′z − iEn,n

′

~
t

)
, (2.213)

where An,n′,j , Bn,n′,j and Cn,n′,j are complex constants.
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2.3 Charged particle with electromagnetic field

Until now, we have only analyzed the Schrödinger’s equation with static magnetic field, however, in this
section we are going to complicate the case a little bit by adding the influence of a constant electric field. We
begin with the Hamiltonian (2.6)

Ĥ =
1

2m

(
p̂− q

c
A
)2

+ V, (2.214)

where the magnetic field is given, as usual, by

B = ∇×A, (2.215)

and the escalar function, V = V (x, y, z), is such that V = qφ where φ = φ(x, y, z) is the electric field potential
such that the electric field is given as

E = −∇φ. (2.216)

Then, we can select the potential such that the magnetic field is perpendicular to the electric field, B ⊥ E
which is, actually, the case we are interested in. If we use Landau’s gauge as in section (2.1)

A = B(−y, 0, 0), (2.217)

then, a selection of the electric field potential is

φ = −Ey, (2.218)

where E ∈ R+ is the electric field magnitud and is a constant, note that B · E = 0 as desired. Then, the
Hamiltontian to work with is written as

Ĥ =
1

2m

(
(p̂x +mωcy)

2
+ p̂2

y + p̂2
z

)
− qEy, (2.219)

where cyclotron frequency is ωc = qB/mc, as in section (2.1). The above Hamiltonian can be rewritten as
we have done while analyzing the case where we use the Landau’s gauge only, eq.(2.21), that is

Ĥ =
1

2m

(
p̂2
x + p̂2

y + p̂2
z + 2mωcyp̂x +m2ω2

cy
2
)
− qEy, (2.220)

thus, the time dependent Schrödinger’s equation is written as

i~
∂ψ

∂t
= − ~

2

2m

(
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
+ 2i

mωc
~

y
∂ψ

∂x
− m2ω2

c

~2
y2ψ

)
− qEyψ. (2.221)

Even though if at this point the reader could be tempted to separate the temporal variable, t, and the spatial
variable z, via a solution of the form

ψ = ψ(x, y, z, t) → ψ(x, y, z, t) = ψ1(x, y)ψ2(z)ψ3(t) (2.222)

it turns out, ironically, that the eigenvalue equation that comes with this process is more complicated to
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solve than the time dependent equation. Instead of going through this process, we are going to solve the full
Schrödinger’s equation. First, is necessary to propose the following time dependent form of solution

ψ = ψ(x, y, z, t) → ψ(x, y, z, t) = ψ1(x, y, t)ψ2(z, t) (2.223)

which will give us the couple of time dependent Schrödinger’s equation

i~
∂ψ1

∂t
= − ~

2

2m

(
∂2ψ1

∂x2
+
∂2ψ1

∂y2
+ 2i

mωc
~

y
∂ψ1

∂x
− m2ω2

c

~2
y2ψ1

)
− qEyψ1. (2.224)

i~
∂ψ2

∂t
= − ~

2

2m

∂2ψ2

∂z2
, (2.225)

then, is not difficult to figure out that the solution for the partial differential equation (2.224) is given by

ψ2(z, t) =
1√
Lz

exp

(
i

√
2mEz
~

z − iEz
~
t

)
, (2.226)

where Ez is a real constant. Similarly as in the prior cases, if we use Born normalization, we get that

Ez = En′ =
1

2m

(
2π~
Lz

n′
)2

, n′ ∈ Z+. (2.227)

To solve the equation (2.224) we begin by performing the Fourier transform respect the variable x, defined
by eq.(2.30), defining

Fx(ψ1) = ψ̄(κ, y, z, t) (2.228)

and using the property (A.4) and rearranging we can write the equation in the Fourier space

i~
∂ψ̄

∂t
= − ~

2

2m

(
∂2ψ̄

∂y2
− m2ω2

c

~2
y2ψ̄ + 2

mωc
~

(
κ+

qE
~ωc

)
yψ̄ − κ2ψ̄

)
, (2.229)

now, we can complete the squared to rewrite it as follows

i~
∂ψ̄

∂t
= − ~

2

2m

(
∂2ψ̄

∂y2
−
(
mωc
~

y − κ− qE
~ωc

)2

ψ̄ +

(
κ+

qE
~ωc

)2

ψ̄ − κ2ψ̄

)
, (2.230)

which can be rewritten as

i~
∂ψ̄

∂t
= − ~

2

2m

(
∂2ψ̄

∂y2
−
(
mωc
~

y − κ− qE
~ωc

)2

ψ̄ + 2
qE
~ωc

κψ̄ +

(
qE
~ωc

)2

ψ̄

)
. (2.231)

Now, we propose the following solution in the Fourier space
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ψ̄(κ, y, t) = e−i
E
~ tϕ(κ, y), (2.232)

substituting this and rearranging gives the eigenvalue equation in Fourier space(
E +

qE~
mωc

κ+
1

2m

(
qE
ωc

)2
)
ϕ = − ~

2

2m

(
∂2ϕ

∂y2
− m2ω2

c

~2

(
y − ~

mωc
κ− qE

mω2
c

)2

ϕ

)
, (2.233)

thus, we got, again, the displaced harmonic oscillator equation in the Fourier space. We continue making the
change of variable

ξ =

√
mωc
~

(
y − ~

mωc
κ− qE

mω2
c

)
, (2.234)

which changes the differential operator as

∂2

∂y2
=
mωc
~

∂2

∂ξ2
, (2.235)

and defining

E′ = E +
qE~
mωc

κ+
1

2m

(
qE
ωc

)2

, (2.236)

then, the differential equation takes the form

−2E′

~ωc
ϕ =

∂2ϕ

∂y2
− ξ2ϕ. (2.237)

Therefore, the solution is given by

ϕn(ξ) =
1√

2nn!

(mω
π~

)1/4

exp

(
−ξ

2

2

)
Hn(ξ), (2.238)

and the eigenvalues are

E′ = En = ~ωc
(
n+

1

2

)
, then E = ~ωc

(
n+

1

2

)
− qE~
mωc

κ− 1

2m

(
qE
ωc

)2

(2.239)

Hence, the solution in the Fourier space is

ψ̄(κ, y, t) = exp

[
−i

(
~ωc

(
n+

1

2

)
− qE~
mωc

κ− 1

2m

(
qE
ωc

)2
)
t

~

]
ϕn

(√
mωc
~

(
y − ~

mωc
κ− qE

mω2
c

))
.

(2.240)

Now, it is necessary to take the inverse Fourier transform of the above solution. Lets recall the definition of
the inverse Fourier transform which is as follows

F−1
κ (φ(κ)) =

1√
2π

∫
R

e−iκxφ(κ)dκ. (2.241)
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Then,

ψ1(x, y, t) = F−1
κ (ψ̄) = exp

[
−i

(
~ωc

(
n+

1

2

)
− 1

2m

(
qE
ωc

)2
)
t

~

]
×

× 1√
2π

∫
R

exp

(
−i
(
x− qE

mωc
t

)
κ

)
ϕn

(√
mωc
~

(
y − ~

mωc
κ− qE

mω2
c

))
dκ,

(2.242)

now, changing the variable

κ =
mωc
~

y − qE
~ωc
−
√
mωc
~

ξ, (2.243)

we can write

ψ1(x, y, t) = exp

[
−i

(
~ωc

(
n+

1

2

)
− 1

2m

(
qE
ωc

)2
)
t

~
− i
(
x− qE

mωc
t

)(
mωc
~

y − qE
~ωc

)]
×

×
(
−
√
mωc
~

)
1√
2π

∫
R

exp

(
i

√
mωc
~

(
x− qE

mωc
t

)
ξ

)
ϕn(ξ)dξ,

(2.244)

hence, we realize that, similarly as in the case where we described the magnetic field using the Landau’s gauge,
the final integral is the Fourier transform of an harmonic oscillator, thus, using the result of the appendix
(A.1) which implies that the Fourier transform of a harmonic oscillator is another harmonic oscillator, we
can write the solution of the time dependent Schrödinger equation as

ψn(x, y, t) = A exp (−iχn(x, y, t))φn

(√
mωc
~

(
x− qE

mωc
t

))
, (2.245)

where A is a normalization constant, the definition ψ1 = ψn was made, the phase was defined as follows

χn(x, y, t) =

(
~ωc

(
n+

1

2

)
− 1

2m

(
qE
ωc

)2
)
t

~
+

(
x− qE

mωc
t

)(
mωc
~

y − qE
~ωc

)
(2.246)

and the harmonic oscillator function was denoted by

φn(ξ) =
1√

2nn!

(mωc
π~

)1/4

exp

(
−ξ

2

2

)
Hn(ξ). (2.247)

Similarly than in the case without electric field, that is E = 0, the normalization constant can be calculated
with the expression

Ly/2∫
−Ly/2

∞∫
−∞

|ψn(x, y, t)|2dxdy = 1, (2.248)

and is not difficult to find that A = 1/
√
Ly.

To end with this section, one must recall that the expression eq.(2.245) satisfies the two dimensional time
dependent Schrödinger’s equation, given by (2.224), instead of the eigenvalue equation. Due to the importance
of this solution, a proof of this last statment is given in the appendix (C.1).
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2.3.1 Degeneration of the system with electromagnetic field

To study the degeneration of the system we are going to focus in the two dimensional equation (2.224) which
define us the Hamiltonian

Ĥ =
1

2m

(
p̂2
x + p̂2

y + 2mωcyp̂x +m2ω2
cy

2
)
− qEy, (2.249)

as the reader could note, the selection of the electric field potential has no effect with the conservation of the
linear momentum in x direction as in the case where E = 0, that is,

[p̂x, Ĥ] = 0, (2.250)

the operator p̂x stills commutes with the Hamiltonian. Therefore, since the application of this operator do
not gives a function proportional to the original one, p̂xψn � ψn, we can expect to have a set of solutions
of the time dependent Scrödinger’s equation. This it easy to prove, we can write the generalization of the
above commutation argument as

[p̂jx, Ĥ] = 0, j ∈ Z+, (2.251)

where the index j defines the j-th application of the operator. Then, being the solution eq.(2.245) such that

Ĥψn = i~
∂ψn
∂t

, (2.252)

from the commutation relation (2.251) applied to this solution we have that

p̂jx

(
Ĥψn

)
= Ĥ

(
p̂jxψn

)
, (2.253)

hence

i~
∂

∂t

(
p̂jxψn

)
= Ĥ

(
p̂jxψn

)
. (2.254)

Therefore, the function p̂jxψn is also a solution of the complete Scrödinger’s equation. Similarly as we did
in the section (2.1.1) is posible to find an expression for the j-th application of the momentum operator,
defining the functions as

f jn(x, y, t) = p̂jxψn(x, y, t), j = 0, 1, 2, ... (2.255)

using the equalities (2.62) and (2.82) one can demonstrate that the eigenfunctions has the following form

f j+1
n (x, y, t) =

[
mωc

(
i

(
x− qE

mωc
t

)
− y
)

+
qE
ωc

]
f jn +mωc~jf j−1

n − i
√

2nmωc~f jn−1. (2.256)

At this point, one could try, again, to invert the magnetic field direction and use the definitions of the
momentum operators (2.14) and (2.15) to try to obtain a couple of operators that commutes with the
Hamiltonian. However, doing this process using the gauge A′ = B(0,−x, 0), we obtain the operators

π̂′x = p̂x, π̂′y = p̂y +mωcx, (2.257)
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and is a straightforward calculation to prove that

[π̂′y, Ĥ] = i~qE , (2.258)

hence, the operator π̂′y is not conserved anymore. Regardless this situation, is still possible to find a
second eigenvalue equation parametrized for the degeneration index j. First, we calculate the action of
the momentum p̂y over the function eq.(2.245)

p̂yψn = −mωc
(
x− qE

mωc
t

)
ψn. (2.259)

Second, we apply j times the momentum operator p̂x to the above expression

(p̂x)j p̂yψn = −mωc(p̂x)j
[(
x− qE

mωc
t

)
ψn

]
. (2.260)

Using the fact that [(p̂x)j , p̂y] = 0 and the differentiation of two functions, eq.(2.82), we can write

p̂yf
j
n = −mωc

(
x− qE

mωc
t

)
f jn + imωc~jf j−1

n , (2.261)

doing some rearrangement, changing j → j + 1 and using the definitions (2.257), the prior can be rewritten
as

(π̂′y − qEt)π̂′xf jn = imωc~(j + 1)f jn. (2.262)

And the operator
Π̂′y = π̂′y − qEt, (2.263)

is conserved, as can be corroborated by using the evolution of an operator in Heisenberg scheme

df̂

dt
=

1

i~
[f̂ , Ĥ] +

∂f̂

∂t
. (2.264)

There is a third conserved operator which is the the energy operator defined as

Ê = i~
∂

∂t
, (2.265)

do not share bases with the Hamiltonian, instead it is a generator of solutions of the complete Schrödinger
equation. This is easy to prove, using the fact that any power of this operator commutes with the Hamiltonian,
that is, [(Ê)j , Ĥ] = 0, where j ∈ Z+, then it follows that

(Ê)jĤψn = Ĥ(Ê)jψn, (2.266)

defining the functions gjn(x, y, t) = (Ê)jψn(x, y, t) and using the expression eq.(D.55), it follows that

i~
∂gjn
∂t

= Ĥgjn. (2.267)

Hence, the energy operator combined with the operator eq.(2.263) can be used to find a second eigenvalue
expression

Π̂′yÊg
j
n = iqE~(j + 1)gjn. (2.268)

To end up with this section, we must say that a couple of extra cases dealing with electromagnetic field are
solved in the appendix (C).
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2.3.2 Summary of the results with electromagnetic field

Finally, to finish this chapter we present a summary of this last case results. Having an electromagnetic field,
such that

B = ∇×A, (2.269)

and

E = −∇φ. (2.270)

where A and φ are the vector potential and the electric potential respectively and such that they are
perpendicular, B ⊥ E, we use Landau’s gauge with magnetic field intensity of |B| = B

A = B(−y, 0, 0), (2.271)

and select the electric field potential as

φ = −Ey, (2.272)

such that the electric field intensity is |E| = E . This define us the following Hamiltonian

Ĥ =
1

2m

(
p̂2
x + p̂2

y + p̂2
z + 2mωcyp̂x +m2ω2

cy
2
)
− qEy, (2.273)

where the following operators are conserved

π̂′x = p̂x, (2.274)

Π̂′y = π̂′y − qEt, (2.275)

Ê = i~
∂

∂t
. (2.276)

The later define us the solutions of the time dependent Schrödinger equations as

ψjn(x, y, z, t) = f jn(x, y, t)
1√
Lz

exp

(
i
2π

Lz
n′z − iEn

′

~
t

)
, (2.277)

where

En′ =
1

2m

(
2π~
Lz

n′
)2

, n′ ∈ Z+. (2.278)

and the following definitions where made,

f jn(x, y, t) = p̂jxψn(x, y, t), j = 0, 1, 2, ... (2.279)

with

ψn(x, y, t) =
1√
Ly

exp (−iχn(x, y, t))φn

(√
mωc
~

(
x− qE

mωc
t

))
, (2.280)

the phase is define as

χn(x, y, t) =

(
~ωc

(
n+

1

2

)
− 1

2m

(
qE
ωc

)2
)
t

~
+

(
x− qE

mωc
t

)(
mωc
~

y − qE
~ωc

)
, (2.281)
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and the harmonic oscillator function was denoted by

φn(ξ) =
1√

2nn!

(mωc
π~

)1/4

exp

(
−ξ

2

2

)
Hn(ξ). (2.282)

Then we have that the functions eq.(2.277) satisfies the equalities

Ĥf jn = i~
∂f jn
∂t

, (2.283)

and, defining the canonic momentum operators obtained by the inversion of the magnetic field direction
eq.(2.257),

π̂′x = p̂x, π̂′y = p̂y +mωcx, (2.284)

we have that
(π̂′y − qEt)π̂′xψjn = imωc~(j + 1)ψjn. (2.285)

Also, using the energy operator, we can define a new set of solutions for the time dependent Schrödinger
equation. Defining

gjn(x, y, t) = Êjψn(x, y, t), j = 0, 1, 2, ... (2.286)

were the solutions are written as

gj+1
n (x, y, t) =

(
αn(y) +

qE
~

(
x− qE

mωc

))
gjn − ij

q2E
mωc

gj−1
n − qE

mωc

√
2n
mωc
~

e−i~ωcgjn−1, (2.287)

and the following definition was made

αn(y) = ~ωc
(
n+

1

2

)
− 1

2m

(
qE
ωc

)2

+

(
mωc
~

y − qE
~ωc

)
, (2.288)

we have that all the gjn functions satisfies the expressions

Ĥgjn = i~
∂gjn
∂t

, (2.289)

and also satisfies the eigenvalue equation

Π̂′yÊg
j
n = iqE~(j + 1)gjn. (2.290)

Hence, the general solution can be written as a linear combination of the basis, that is

Ψ(x, y, z, t) =
∑

n,n′,j,j′

Cn,n′,j,j′Ê
j′ p̂jxψn(x, y, t)

1√
Lz

exp

(
i
2π

Lz
n′z − iEn

′

~
t

)
, (2.291)

where Cn,n′,j,j′ are complex constants.
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Chapter 3

Analogous quantum Hall effect

3.1 Definition of the current

In the previous chapter, we have shown how to work with Hamiltonians involving electromagnetic fields,
therefore, we already have our wave functions to work with. However, there is still a definition we need and
is that one of electric current which is going to be deduced in this section. We beging with the no relativistic
Hamiltonian (2.6)

Ĥ =
1

2m

(
P̂− q

c
A
)2

+ V, (3.1)

where V ∈ R is a scalar function and the vector field with domain and image in the reals A : R3 → R3, then,
we substitute the momentum operator P̂ = −i~∇ and expanding the squared term to write

Ĥ =
1

2m

(
−~2∇2 + i

~q
c

(∇ ·A + A · ∇) +
q2

c2
A2

)
+ V, (3.2)

therefore, Schrödinger’s equation is written as

i~
∂ψ

∂t
=

1

2m

(
−~2∇2ψ + i

~q
c

(∇ · (Aψ) + A · ∇ψ) +
q2

c2
A2ψ

)
+ V ψ. (3.3)

We can take the complex conjugate of this last expression to write

−i~∂ψ
∗

∂t
=

1

2m

(
−~2∇2ψ∗ − i~q

c
(∇ · (Aψ∗) + A · ∇ψ∗) +

q2

c2
A2ψ∗

)
+ V ψ∗, (3.4)

multiplying eq.(3.3) by ψ∗ and eq.(3.4) by −ψ, adding up both results and making some rearrangements we
can write

i~
∂(ψψ∗)

∂t
=

1

2m

(
~2(ψ∇2ψ∗ − ψ∗∇2ψ) + i

~q
c

(
ψ∗∇ · (Aψ) + ψ∗A · ∇ψ + ψ∇ · (Aψ∗) + ψA · ∇ψ∗

))
(3.5)

realizing that

∇ · (ψ∇ψ∗ − ψ∗∇ψ) = ψ∇2ψ∗ − ψ∗∇2ψ, (3.6)

42



Quantum Dynamics For Single Charged Particle With Electromagnetic Field and The Consequences Of A New Solution

and also
ψ∗∇ · (Aψ) + ψ∗A · ∇ψ + ψ∇ · (Aψ∗) + ψA · (∇ψ∗) = 2∇ · (Aψ∗ψ), (3.7)

substituting this two equalities, simplifying and rearranging it we can write the following expression

∂(ψψ∗)

∂t
+∇ ·

(
i~
2m

(ψ∇ψ∗ − ψ∗∇ψ)− q

mc
Aψ∗ψ

)
= 0. (3.8)

The above expression is nothing but the continuity equation without sources, which is written as

∂ρ

∂t
+∇ · J = 0, (3.9)

where
ρ = ψψ∗, (3.10)

represent the particle probability density function and the current is define as

J =
i~
2m

(ψ∇ψ∗ − ψ∗∇ψ)− q

mc
Aψ∗ψ. (3.11)

Note that the above current definition could be written as J = vρ where v is the particle velocity, since we
are interested in the electrical current is necessary to multiply it times the particle charge q, therefore, the
electrical current is Je = qJ so

Je =
iq~
2m

(ψ∇ψ∗ − ψ∗∇ψ)− q2

mc
Aψ∗ψ. (3.12)

A useful alternative form of the above equality can be deduced if we write the wave function in polar
coordinates. Since ψ is a complex function ψ : C→ C, therefore, we can write it as

ψ = Re(ψ) + iIm(ψ) =
√
Re(ψ)2 + Im(ψ)2ei arctan( Im(ψ)

Re(ψ) ), (3.13)

or, since ρ = |ψ|2 = Re(ψ)2 + Im(ψ)2 the radius can be define as r =
√
ρ and θ = arctan

(
Im(ψ)
Re(ψ)

)
, then

ψ = reiθ, (3.14)

substituting it in eq.(3.17) using the following diferentiation results

∇ψ = (∇r + ir∇θ)eiθ, (3.15)

and
ψ∇ψ∗ − ψ∗∇ψ = −2ir2∇θ, (3.16)

we can write the electrical current in therms of the phase as

Je =

(
q~
m
∇θ − q2

mc
A

)
|ψ|2. (3.17)
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3.2 Single charged particle electrical current

This section is strongly based on the results obtained in the appendix (D). As we mention before in appendix
(D.2.3), we are going to deduce an analogous phenomena to the quantum Hall effect using the solution
(D.73), since the quantum Hall effect is a phenomena that appears when a electromagnetic field is presented.
However, since in this particular phenomena the electron gas is constrained to a two dimensional surface
whose normal vector is parallel to the magnetic field, we only need the x− y solution of the respective wave
function, that is

Ψ(x, y, t) =
∑
n

Cnψn(x− δx, y, t− δt), (3.18)

where

ψn(x, y, t) =
1√
Ly

exp (−iχn(x, y, t))φn

(√
mωc
~

(
x− qE

mωc
t

))
, (3.19)

the phase is define as

χn(x, y, t) =

(
~ωc

(
n+

1

2

)
− 1

2m

(
qE
ωc

)2
)
t

~
+

(
x− qE

mωc
t

)(
mωc
~

y − qE
~ωc

)
, (3.20)

and the harmonic oscillator function was denoted by

φn(ξ) =
1√

2nn!

(mωc
π~

)1/4

exp

(
−ξ

2

2

)
Hn(ξ). (3.21)

A experimental feature about the QHE is that the temperature is decreased at the point that the systems is
found near the lowest Landau’s level, therefore, the wave function has the following form

Ψ(x, y, t) =
C0√
Ly

exp (−iχ0(x− δx, y, t− δt))φ0

(√
mωc
~

(
x− δx− qE

mωc
t− δt

))
, (3.22)

hence, since the harmonic oscillator is a function with domain and image in the reals and the constant C0

can be written as

C0 =
√
Re(C0)2 + Im(C0)2e

i arctan
(
Im(C0)

Re(C0)

)
, (3.23)

making the definition ∆x = x− δx and ∆t = t− δt, the phase is equal to

θ = −~ωc∆t
2~

+
1

2m

(
qE
ωc

)2
∆t

~
−
(

∆x− qE
mωc

∆t

)(
mωc
~

y − qE
~ωc

)
+ arctan

(
Im(C0)

Re(C0)

)
. (3.24)

Now, we substitute it in the definition of the electrical current eq.(3.17) having calculated the phase gradient
to be

∇θ = −
(
mωc
~

y − qE
~ωc

)
î− mωc

~

(
∆x− qE

mωc
∆t

)
ĵ, (3.25)

and knowing that the gauge A = B(−y, 0, 0) was used, after simplifying, we got the electrical current to be

Je =

(
qcE
B
î− qωc

(
∆x− qE

mωc
∆t

)
ĵ

)
|Ψ|2. (3.26)

44 Single charged particle electrical current



Quantum Dynamics For Single Charged Particle With Electromagnetic Field and The Consequences Of A New Solution

Since the electrical current definition is Je = σE, therefore, where the electric field for this system is E =
(0, E , 0) and the conductivity is a 3× 3 matrix

σ =

σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

 , (3.27)

then, the electrical conductivity can be written as

Je = E(σxy î+ σyy ĵ + σzyk̂), (3.28)

and by association with the conductivities eq.(3.26) are

σxy =
qc

B
|Ψ|2, σyy = −qωc

E

(
∆x− qE

mωc
∆t

)
|Ψ|2, σzy = 0. (3.29)

Lets remember that the resistivity is the inverse of the conductivity and, due to its direction, σxy is the Hall
conductivity, then, we are going to denote the Hall resistivity as

ρH =
B

qc

1

|Ψ|2
, (3.30)

and the longitudinal resistivity is define as

ρL = − E

qωc

(
∆x− qE

mωc
∆t
) 1

|Ψ|2
, (3.31)

the resistivity along z direction is meaningless since the system is constrained to a plane and there is no
movement in that direction. In QHE experiments, what is measured is resistivity [3, 22], therefore, our
observable quantity is the mean value of the above resistivity definitions. The expected value of the Hall
resistivity eq.(3.30) is

〈Ψ| ρH |Ψ〉 =
B

qc

∫∫
Ω

|Ψ|2

|Ψ|2
dx dy, (3.32)

where Ω is the integration domain which, in this case, is limited to a plane of area A = LxLy, then, multiplying
and dividing the above equality by mωc/~ on the right hand side and substituting the value of ωc = qB/mc
in the denominator we can write down the Hall resistivity as

〈Ψ| ρH |Ψ〉 =
~
q2

(mωc
~

A
)
. (3.33)

On the other hand, the expected value of the longitudinal resistivity, eq.(3.31), is

ρL = −
∫∫
Ω

E

qωc

(
∆x− qE

mωc
∆t
) dx dy, (3.34)

this resistivity is expected to vanish in the experimental measurements [3,14,15,22–25,27,45]. We note that
the only way for the above integral to vanish is if the time is larger than the quantity mωc

qE ∆x, that is
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lim
t→∞

ρL = 0, (3.35)

since the translation δx must be chosen in a way that the wave function is still inside our domain, inside the
plane, we have that 0 ≤ |x− δx| ≤ Lx, therefore, we can expect the longitudinal resistivity to vanish if

∆t >>
mωc
qE

Lx. (3.36)

One needs to mention that the concept of a vanishing resistivity after a given time interval can be find in
the literature as relaxation time [82, p. 498]. Continuing with the analysis of the expression eq.(3.33), in the
introduction of this thesis, we discussed how Landau’s quantization of magnetic flux, eq.(1.13), was obtained
by Landau himself as a periodicity argument and an analysis of the maxima and minima value of the center
of the harmonic oscillator. This implies the quantization of the quantity

mωc
~

A = 2πl, l ∈ Z, (3.37)

and leads to the deduction of the IQHE via a classic deduction of the Hall resistivity, eq.(1.11). The above
expression is also known has the magnetic flux quantization. However, the result we got earlier for the
Hall resistivity, eq.(3.33), has been obtained only with the quantum electrical current definition and is quite
interesting since it implies that the quantization of the magnetic flux give rise to the quantization of the
Hall resistivity such that is directly proportional to the Klitzing’s constant, eq.(1.6), in other words, if the
magnetic flux is quantized, then, it implies the existence of the FQHE. As we have seen in appendix (D)
we showed three different posible reasons of the quantization of this quantity. Hence, for the lowest Landau
level, n = 0, the general solution is Ψ(x, y, t) = ψ0(x − δx, y, t − δt) and using the expression eq.(D.75) one
can see immediately that the resistivity is quantized in integer multiples of the von Klitzing constant, that is,
〈ρH〉 = lh/q2. One must mention that this quantization has been already measured experimentally in [22].

The expression eq.(3.33) can be rewritten as〈
E
jx

〉
=
~
q2

(mωc
~

A
)
−→ h

qδtδy

〈
1

jx

〉
=

h

q2

(mωc
~

A
) ~
qE

1

δtδy
, (3.38)

note that the unit of the following quantity is the ohm[
h

qδtδy

〈
1

jx

〉]
= Ω, (3.39)

Therefore, this quantity express the Hall resistance. Finally, substituting the fields quantizations conditions,
eq.(D.75) and eq.(D.76), it can be written as

RH =
h

q2

l

k
, (3.40)

thus, the Hall resistance is quantized in rational numbers of the von Klitzing constant.

3.3 Comparison with the experimental data

From equality (3.37) one can find a relation with the magnetic field, that is

B =
hc

qA
l, l ∈ Z, (3.41)
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for the particular case where l = 1, from eq.(3.33), one have that the resistance must be

〈Ψ| ρH |Ψ〉 =
h

q2
, (3.42)

this value is easy to identify in the experiments. Since the values of all constants involved in the expression
(3.41) are known except for the area A, we can deduce that we must find a way to calculate this last constant.
For instance, in the reference [22] which the experimental data is shown in fig.(3.1), since the relation from
eq.(3.33) describes a linear behavior, we see that the value of the magnetic field when the resistivity has the
value of h/q2 is the one when the lineal red curve cuts the flat with a filling factor of 1, that is

B0 = 5T, (3.43)

which can be used to calculate the area using the expression

A =
hc

qB0
, (3.44)

which in this case turns out to be A ≈ 8.27 × 10−4µm2. Now is important to note that we will have the
following couple of equalities

B = B0l, 〈Ψ| ρH |Ψ〉 =
h

q2
l, (3.45)

which tell us that we could find another quantization condition when l = 3 which implies that B = 15T where
the resistivity will be 〈ρ〉 = 3h/q2, which in fact can be seen in the experimental data shown below. A similar
process can be performed in the experimental data on the reference [23] which is shown in the fig.(3.2). For
this case one can fin that B0 = 9.8T , which corresponds to an area of A = 4.22× 10−4µm2. The figure (3.3)
shows the experimental data reported on reference (3.3), for this case B0 = 4.2T which leads to an area of
A = 9.85 × 10−4µm2. We continue with the fig.(3.4) where B0 = 5.3T for an area of A = 7.8 × 10−4µm2.
Finally, for the fig.(3.5) B0 = 12T for an area of A = 3.45× 10−4µm2. Finally, it is interesting to note that
all the flats are localized by a modified magnetic field expression B = B0l/k where l, k ∈ Z+ once the are is
determined.
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Figure 3.1: Experimental data presented in reference [22]. ρxy and ρxx vs B, taken from a GaAs-Al0.3-Ga0.7As
sample with n = 1.23 × 1011/cm2, µ = 90000cm2/V sec, using I = 1µA. The Landau level filling factor is
defined by ν = nh/qB. The red line represents the linear behavior of the resistivity and the blue lines
intersects the red line when it crosses the flat plateaus.
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Figure 3.2: Experimental data presented in reference [23]. The FQHE as it appears today in
ultrahigh-mobility modulation-doped GaAs/AlGaAs 2DESs. Many fractions are visible. The red line
represents the linear behavior of the resistivity and the blue lines intersects the red line when it crosses
the flat plateaus.
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Figure 3.3: Experimental data presented in reference [83]. When the Hall resistance is measured as a function
of magnetic field plateaus at quantized values are observed. In regions of the magnetic field where the Hall
resistance is in a plateau, the longitudinal resistance vanishes. The red line represents the linear behavior of
the resistivity and the blue lines intersects the red line when it crosses the flat plateaus.
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Figure 3.4: Experimental data presented in reference [55]. Longitudinal resistance (Rxx, in black and blue)
and Hall resistance (Rxy, in red) vs perpendicular magnetic field B⊥ traces for ultrahigh-mobility 2D hole
sample. The height of the Blue trace is divided by a factor of 10. The B⊥ positions of severals Landau
levels fillings are marked. A strong minimum in Rxx accompanied by a developing Hall plateau is observed
at ν = 3/4. An enlarged version of the Rxy and B⊥ near ν = 3/4 at 20mK in the top-left inset. The green
line represents the linear behavior of the resistivity and the dark-yellow lines intersects the green line when
it crosses the flat plateaus.
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Figure 3.5: Experimental data presented in reference [25]. Overview of diagonal resistivity ρxx and Hall
resistance ρxy of sample described in the reference. The red line represents the linear behavior of the
resistivity and the blue lines intersects the red line when it crosses the flat plateaus.
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Conclusions

Through out this work, the non relativistic hamiltonian for electromagnetic field was analyzed using different
gauge selection. The results obtained were

a) Non separable variable solutions for all cases were found, that is, using Landau’s gauge, symmetric
gauge and for electromagnetic field.

b) The degeneration of all the systems were determined obtaining analytical expressions for all the cases.
This degeneration is determined by the application of the conserved operators of each system on the
solution determined.

c) The energies of the systems were determined being the Landau’s level in all cases involving static
magnetic field only. For the case with electromagnetic field involved, the time evolution operator do
not give an eigenequation solution, instead, it gives more solutions to the time dependent Schrödinger’s
equation.

d) The symmetries of all the systems were analyzed showing that the electromagnetic flux quantization
conditions, eq.(D.76) and (D.75), are necessary if the system is invariant under this unitary transformation.
This result was used in the determination of the resistivity of the system showing that if this condition
is satisfied then then resistivity is quantized.

e) The above result was compared with the existing experiments at the moment showing that it is related
to the phenomena called fractional quantum Hall effect. We used the quantization relation obtained
in the appendix (D) and the result of the section (3.2) to calculate the mid point of the quantum hall
effect plateaus which were determined successfully. This implies that the fractional quantum Hall effect
is an observable manifestation of the wave function invariance under the application of the operator
(D.68).
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Appendix A

Calculation details for the Landau’s
gauge

A.1 Fourier transform of a harmonic oscillator

In this section we are going to study some properties of the Fourier transform and apply them to the harmonic
oscillator problem. Being the function φ = φ(x) belonging to the square-integrable space L2, that means
that at x→ ±∞, then, φ→ 0. So, Fourier transform is define as

Fx(φ) =
1√
2π

∫
R

eiκxφdx. (A.1)

The first identity we are going to need is the Fourier transform of the derivative of a function

Fx
(
∂φ

∂x

)
=

1√
2π

∫
R

eiκx
∂φ

∂x
dx, (A.2)

integrating by parts and using the fact that the function is square-integrable, we get that

Fx
(
∂φ

∂x

)
= −iκFx(φ). (A.3)

Using this last identity is easy to prove that for a n ∈ Z+ we have that

Fx
(
∂nφ

∂xn

)
= (−iκ)nFx(φ). (A.4)

Next, let’s study the Fourier transform of the product of the function with its respective variable

Fx(xφ) =
1√
2π

∫
R

eiκxxφdx, (A.5)
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then, we rewrite the above expression as

Fx(xφ) = − i√
2π

∂

∂κ

∫
R

eiκxφdx, (A.6)

therefore we have that

Fx(xφ) = −i ∂
∂κ
Fx(φ), (A.7)

and with this result we have for some n ∈ Z+ that

Fx(xnφ) =

(
−i ∂
∂κ

)n
Fx(φ). (A.8)

We continue applying the Fourier transform on the harmonic oscillator function, that is,

−d
2ψ

dx2
+ x2ψ = εnψ, (A.9)

where εn ∈ R is a constant define as εn = 2En/~ωc and

En = ~ωc
(
n+

1

2

)
. (A.10)

Applying the Fourier transform to (A.9) and denoting the solution in the Fourier space “κ” as

Fx(φ) = φ(κ), (A.11)

we can write

−Fx
(
d2φ

dx2

)
+ Fx

(
x2φ

)
= εnFx(φ), (A.12)

then we use the identities (A.4) and (A.8) both of them with n = 2 and rearranging it we write

−∂
2φ

∂κ2
+ κ2φ = εnφ. (A.13)

Hence, the Fourier transform of a harmonic oscillator in the space x is another harmonic oscillator in the
space κ. This means that if the solution of (A.9) in the real space is

φn(x) =
1√

2nn!

(mω
π~

)1/4

exp

(
−x

2

2

)
Hn(x), (A.14)

Calculation details for the Landau’s gauge 55



Quantum Dynamics For Single Charged Particle With Electromagnetic Field and The Consequences Of A New Solution

where Hn are the Hermite polynomials, by definition (A.11) we have that

φn(κ) =
1√
2π

∫
R

eiκxφn(x)dx, (A.15)

that is
1√
2π

∫
R

eiκxφn(x)dx =
1√

2nn!

(mω
π~

)1/4

exp

(
−κ

2

2

)
Hn(κ). (A.16)

Then, using the inverse Fourier transform, define as

F−1
κ (φn(κ)) =

1√
2π

∫
R

e−iκxφn(κ)dκ, (A.17)

that has the following property

F−1
κ (Fx( f(x))) = f(x), (A.18)

is easy to prove that

φn(x) =
1√
2π

∫
R

e−iκxφn(κ)dκ, (A.19)

meaning that the inverse Fourier transform of a harmonic oscillator in the space κ is another harmonic
oscillator in the space x.
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A.2 Proof that Ĥf jn = Enf
j
n for Landau’s gauge

Here we want to prove that the expression (2.85)

f j+1
n (x, y) = mωc

(
~jf j−1

n + (ix− y)f jn
)
− i
√

2nmωc~f jn−1, (A.20)

satisfies the eigenvalue equality Ĥf j+1
n = Enf

j+1
n where the Hamiltonian is of the form (2.52)

Ĥ =
1

2m

(
p̂2
x + p̂2

y + 2mωcyp̂x +m2ω2
cy

2
)
, (A.21)

and eigenvalues of

En = ~ωc
(
n+

1

2

)
. (A.22)

First, we must establish that this proof is done by induction, so we have already proved that for j = 0 and
j = 1 the expression

Ĥf jn = Enf
j
n, (A.23)

holds. Second, its useful to write down a couple of expressions that will be helpful for this task. The reader
can verify that the following equalities holds

Ĥ(xf jn) = −i ~
m
f j+1
n − i~ωcyf jn + xEnf

j
n, (A.24)

and

Ĥ(yf jn) = −i ~
m
p̂yf

j
n + yEnf

j
n. (A.25)

Applying the Hamiltonian (2.52) we have that

Ĥf j+1
n = mωc

(
~jĤf j−1

n + (iĤ(xf jn)− Ĥ(yf jn))
)
− i
√

2nmωc~Ĥf jn−1, (A.26)

using (A.23), substituting expressions (A.24), (A.25),

Ĥf j+1
n = mωc

(
~jEnf j−1

n + (ix− y)Enf
j
n

)
+ ~ωc

(
f j+1
n +mωcyf

j
n + ip̂yf

j
n

)
− i
√

2nmωc~En−1f
j
n−1, (A.27)

analyzing the following sum of terms by substituting the expression (A.20) we can see that
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~ωcf j+1
n − i

√
2nmωc~En−1f

j
n−1 = ~mω2

c

(
~jf j−1

n + (ix− y)f jn
)
− i
√

2nmωc~(En−1 + ~ωc)f jn−1 (A.28)

then is easy to see that En−1 + ~ωc = En and simplifying we have

Ĥf j+1
n = En

(
mωc

(
~jf j−1

n + (ix− y)f jn
)
− i
√

2nmωc~f jn−1

)
+ ~ωc

(
mωc~jf j−1

n +mωcixf
j
n + ip̂yf

j
n

)
,

(A.29)

then we can identify the above expression as

Ĥf j+1
n = Enf

j+1
n + ~ωc

(
mωc~jf j−1

n +mωcixf
j
n + ip̂yf

j
n

)
. (A.30)

Finally, note that as (2.79) holds as true, then, necessarily

mωc~jf j−1
n +mωcixf

j
n + ip̂yf

j
n = 0. (A.31)

Note that this prove is valid for j = 0, 1 which implies that is valid too for j = 2

Ĥf2
n = Enf

2
n, (A.32)

then the prove holds for the next values of j and for induction this is valid for any j ∈ Z+.
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Appendix B

Calculation details for the symmetric
gauge

B.1 Normalization constant for the symmetric gauge

Being the functions

ϕn(x, y) = A exp
(
−α(x2 + y2)− λ(x+ iy)

)(
2α(x− iy) + λ

)n
, (B.1)

we want to determine the normalization constant A such that

〈ϕn|ϕn〉 = 1. (B.2)

So, the inner product can be written as

〈ϕn|ϕn〉 = A2
n

∞∫
−∞

∞∫
−∞

exp
(
−2α(x2 + y2)− λ∗(x− iy)− λ(x+ iy)

)
(2α(x+ iy) + λ∗)n(2α(x− iy) + λ)ndxdy,

(B.3)

then, λ = Re(λ) + iIm(λ) and the next equalities can be written

−2α(x2 + y2)− λ∗(x− iy)− λ(x+ iy) = −2α

((
x+

Re(λ)

2α

)2

+

(
y − Im(λ)

2α

)2
)

+
λ∗λ

2α
, (B.4)

and also

(2α(x− iy) + λ∗)(2α(x+ iy) + λ) = (2α)2

((
x+

Re(λ)

2α

)2

+

(
y − Im(λ)

2α

)2
)
, (B.5)
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Then we can rewrite the integral (B.3) as follows

〈ϕn|ϕn〉 = A2 exp

(
λ∗λ

2α

)
(2α)2n×

×
∞∫
−∞

∞∫
−∞

exp

(
−2α

((
x+

Re(λ)

2α

)2

+

(
y − Im(λ)

2α

)2
))((

x+
Re(λ)

2α

)2

+

(
y − Im(λ)

2α

)2
)n

dxdy,

(B.6)

here, we can use the binomial expression

(x+ y)n =

n∑
k=0

(
n

k

)
xn−kyk (B.7)

where the coefficients are define as (
n

k

)
=

n!

k!(n− k)!
, (B.8)

we use it to write down

((
x+

Re(λ)

2α

)2

+

(
y − Im(λ)

2α

)2
)n

=

n∑
k=0

(
n

k

)(
x+

Re(λ)

2α

)2(n−k)(
y − Im(λ)

2α

)2k

, (B.9)

then, the integral to be solved takes the next form

〈ϕn|ϕn〉 = A2 exp

(
λ∗λ

2α

)
(2α)2n

n∑
k=0

(
n

k

) ∞∫
−∞

exp

(
−2α

(
x+

Re(λ)

2α

)2
)(

x+
Re(λ)

2α

)2(n−k)

dx×

×
∞∫
−∞

exp

(
−2α

(
y +

Im(λ)

2α

)2
)(

y − Im(λ)

2α

)2k

dy. (B.10)

Now, we focus on solving the integral respect of x making the change of variable

ξ =
√

2α

(
x+

Re(λ)

2α

)
, (B.11)

we write
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∞∫
−∞

exp

(
−2α

(
x+

Re(λ)

2α

)2
)(

x+
Re(λ)

2α

)2(n−k)

dx =
1

(2α)n−k+1/2

∞∫
−∞

e−ξ
2

ξ2(n−k)dξ (B.12)

then, we use the definition of the Gamma function

∞∫
−∞

e−ξ
2

ξmdξ =
1

2
((−1)m + 1)Γ

(
m+ 1

2

)
, for Re(m) > −1, (B.13)

with this we can write

∞∫
−∞

exp

(
−2α

(
x+

Re(λ)

2α

)2
)(

x+
Re(λ)

2α

)2(n−k)

dx =
1

(2α)n−k+1/2
Γ

(
n− k +

1

2

)
. (B.14)

Similarly, we can solve the integral respect the variable y to obtain

∞∫
−∞

exp

(
−2α

(
y +

Im(λ)

2α

)2
)(

y − Im(λ)

2α

)2k

dy =
1

(2α)k+1/2
Γ

(
k +

1

2

)
. (B.15)

Therefore, substituting this last two results in the inner product expression (B.10) and simplyfing we have
that

〈ϕn|ϕn〉 = A2 exp

(
λ∗λ

2α

)
(2α)n−1

n∑
k=0

(
n

k

)
Γ

(
n− k +

1

2

)
Γ

(
k +

1

2

)
, (B.16)

then, due to the normalization condition we have that

A2 exp

(
λ∗λ

2α

)
(2α)n−1

n∑
k=0

(
n

k

)
Γ

(
n− k +

1

2

)
Γ

(
k +

1

2

)
= 1. (B.17)

Continuing simplifying, it can prove that

n∑
k=0

(
n

k

)
Γ

(
n− k +

1

2

)
Γ

(
k +

1

2

)
= πn!. (B.18)

and with this, the normalization constant has the form of

An =
e−|λ|

2/4α√
(2α)n−1πn!

. (B.19)

Calculation details for the symmetric gauge 61



Quantum Dynamics For Single Charged Particle With Electromagnetic Field and The Consequences Of A New Solution

B.2 Degenerated eigenfunctions of symmetric gauge

Here, we show the calculation details of the degenerated eigenfunctions for the symmetric gauge. Being the
solution to the two dimensional Hamiltonian (2.129)

ϕn(x, y) = An exp
(
−α(x2 + y2)− λ(x+ iy)

)(
2α(x− iy) + λ

)n
, (B.20)

where An is define as (2.160). Then we have the following eigenfunction generators

π̂′x = p̂x −
mωc

2
y, (B.21)

π̂′y = p̂y +
mωc

2
x, (B.22)

and

L̂z = xp̂y − yp̂x. (B.23)

We begin calculating the eigenfunctions generated by applying the operator (B.21).We are going to denote
this eigenfunctions as follows

(π̂′x)jϕn(x, y) = f jn(x, y), j = 0, 1, 2... (B.24)

where j denote the j-th application of the operator and the next definition was made f0
n(x, y) = ϕn(x, y).

The first application of this operator will give the eigenfunction

f1
n(x, y) = π̂′xf

0
n(x, y) =

(mωc
2

(ix− y) + i~λ
)
f0
n − i

√
mωc~n

2
f0
n−1. (B.25)

Now, we use this expression to calculate the function for the j+ 1 application of the operator π̂′x. First, note
that if two operators, Â and B̂, commute with each other, that is, [Â, B̂] = 0, then, the next property holds

(Â+ B̂)j =

j∑
m=0

(
j

m

)
Âj−mB̂m, (B.26)

where the binomial coefficient (B.8) is used. Defining the constant a = mωc/2, we can write down

(π̂′x)jf1
n = (p̂x − ay)

j
f1
n =

j∑
m=0

(
j

m

)
(p̂x)j−mf1

n(−ay)m, (B.27)

second, is helpful to calculate the expression

(p̂x)Mf1
n =

mωc
2

(−i~)M ∂M

∂xM

(
(ix− y)f0

n

)
+ i~λp̂Mx f0

n − i
√
mωc~n

2
p̂Mx f0

n−1, (B.28)
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then, using the expression for the derivative of the product of two functions, eq. (2.82), we can write

(p̂x)Mf1
n =

mωc
2

(
(ix− y)p̂Mx f0

n + ~Mp̂M−1
x f0

n

)
+ i~λp̂Mx f0

n − i
√
mωc~n

2
p̂Mx f0

n−1, (B.29)

substituting this result in eq. (B.27) with M = j −m, we have that

(π̂′x)jf1
n =

j∑
m=0

(
j

m

)(
a

(
(ix− y)p̂j−mx f0

n + ~(j −m)p̂j−m−1
x f0

n

)
+ i~λp̂j−mx f0

n − i
√
a~np̂j−mx f0

n−1

)
(−ay)m,

(B.30)

now, is possible to do identifications with the expression (B.27) to notice that the above equality can be
rewritten as

(π̂′x)jf1
n = a

(
(ix−y)(π̂′x)jf0

n+~
j∑

m=0

(
j

m

)
(j−m)p̂j−m−1

x f0
n(−ay)m

)
+i~λ(π̂′x)jf0

n−i
√
a~n(π̂′x)jf0

n−1. (B.31)

Following up this calculation, we realize that the summation left has not contribution when m = j, so it can
be rewritten as

j∑
m=0

(
j

m

)
(j −m)p̂j−m−1

x f0
n(−ay)m =

j−1∑
m=0

(
j

m

)
(j −m)p̂j−m−1

x f0
n(−ay)m, (B.32)

then, we note that (
j

m

)
(j −m) = j

(
j − 1

m

)
, (B.33)

this allow us to write

j

j−1∑
m=0

(
j − 1

m

)
p̂j−m−1
x f0

n(−ay)m = j(π̂′x)j−1f0
n, (B.34)

finally, substituting the above expression and using the definition (B.24)

f j+1
n = a

(
(ix− y)f jn + j~f j−1

n

)
+ i~λf jn − i

√
a~nf jn−1. (B.35)

Is not difficult to figure out that the deduction for the functions obtained applying the operator (B.22) is
similar to the one we have done. Hence, we are going to write down the results only and the details are left
for the interested reader. Lets denote this new functions as
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(π̂′y)jϕn(x, y) = gjn(x, y), j = 0, 1, 2... (B.36)

where, again, j denote the j-th application of the operator and the next definition was made g0
n(x, y) =

ϕn(x, y). The first application of this operator will give the eigenfunction

g1
n(x, y) = π̂′yg

0
n(x, y) =

(mωc
2

(x+ iy)− ~λ
)
g0
n −

√
mωc~n

2
g0
n−1, (B.37)

which can be used to calculate the expression

gj+1
n = a

(
(x+ iy)gjn + j~gj−1

n

)
− ~λgjn −

√
a~ngjn−1. (B.38)

Finally, lets analyze the eigenfunctions obtained with the angular momentum defined in the eq. (B.23)

L̂z = xp̂y − yp̂x. (B.39)

In this case, we adopt the following notation

(L̂z)
jϕn(x, y) = Ljn(x, y), j = 0, 1, 2... (B.40)

the first degenerated function which is obtain by applying this operator can be written as

L1
n = −~λ(x+ iy)ϕn −

√
mωc~n

2
(x− iy)ϕn−1, (B.41)

this expression can be rewritten in polar coordinates, using z = reiθ with r =
√
x2 + y2, θ = arctan(y/x)

and ϕ = ϕ(r, θ), then

L1
n = −~λreiθϕn −

√
mωc~n

2
re−iθϕn−1. (B.42)

The later expression is useful for our purpose of finding a general expression of the consecutive angular
momentum applications, since in poolar coordinates this operator can has the following form

L̂z = −i~ ∂
∂θ
, (B.43)

therefore, the j + 1’th application of this operator can be done as follows

Lj+1
n = (−i~)j

(
−~λr ∂

j

∂θj
(
eiθϕn

)
−
√
mωc~n

2
r
∂j

∂θj
(
e−iθϕn−1

))
(B.44)

64 Degenerated eigenfunctions of symmetric gauge



Quantum Dynamics For Single Charged Particle With Electromagnetic Field and The Consequences Of A New Solution

then, using the formula for the derivative of two functinos eq.(2.82) we have

∂j

∂θj
(eiθϕn) = eiθ

j∑
m=0

(
j

m

)
(i)j−m

(−i~)m
L̂mz ϕn, (B.45)

similarly

∂j

∂θj
(e−iθϕn−1) = e−iθ

j∑
m=0

(
j

m

)
(−i)j−m

(−i~)m
L̂mz ϕn−1, (B.46)

substituting them and simplifying

Lj+1
n =

j∑
m=0

(
j

m

)(
−λreiθ(~)j−m+1L̂mz ϕn −

√
mωc~n

2
re−iθ(−~)j−mL̂mz ϕn−1

)
(B.47)

defining the constants

cjm =

(
j

m

)
(~)j−m, (B.48)

and

djm =

(
j

m

)
(−~)j−m, (B.49)

then, using the definition (B.40), the general expression for the eigenfunctions given by the angular momentum
can be written in cartesian coordinates as

Lj+1
n =

j∑
m=0

(
−~λ(x+ iy)cjmLmn −

√
mωc~n

2
(x− iy)djmLmn−1

)
. (B.50)

B.3 Proof that the degeneration expressions satisfies the eigenvalue
equation

So far, we have only deduced the expression for the degenerated eigenfunctions using the conserved operators,
however, it is a healty practice to prove that they satisfy the eigenvalue equation Hψ = Eψ with the two
dimenssional Hamiltonian

Ĥ =
1

2m

(
p̂2
x + p̂2

y −mωcL̂z +
m2ω2

c

4
(x2 + y2)

)
, (B.51)
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having the eigenvalues

En = ~ωc
(
n+

1

2

)
. (B.52)

We beging with the functions (B.35)

f j+1
n = a

(
(ix− y)f jn + j~f j−1

n

)
+ i~λf jn − i

√
a~nf jn−1. (B.53)

Like the case for the degeneration of Landau’s gauge, presented in the appendix (A.2), we are going to do
this proof by induction. Assume that we have two eigenfunctions, such that

Ĥf j−1
n = Enf

j−1
n , Ĥf jn = Enf

j
n (B.54)

then, applying the Hamiltonian (B.51)

Ĥf j+1
n = a

(
Ĥ
[
(ix− y)f jn

]
+ j~Ĥf j−1

n

)
+ i~λĤf jn − i

√
a~nĤf jn−1, (B.55)

then, is necessary to calculate the expression

Ĥ
[
(ix−y)f jn

]
=

1

2m

(
p̂2
x

[
(ix− y)f jn

]
+ p̂2

y

[
(ix− y)f jn

]
−mωcL̂z

[
(ix− y)f jn

]
+
m2ω2

c

4
(x2 + y2)

[
(ix− y)f jn

])
.

(B.56)

Is useful to calculate the following expression,

p̂x

[
(ix− y)f jn

]
= ~f jn + (ix− y)p̂xf

j
n, (B.57)

p̂2
x

[
(ix− y)f jn

]
= 2~p̂xf jn + (ix− y)p̂2

xf
j
n, (B.58)

p̂y

[
(ix− y)f jn

]
= i~f jn + (ix− y)p̂yf

j
n, (B.59)

p̂2
y

[
(ix− y)f jn

]
= 2i~p̂yf jn + (ix− y)p̂2

yf
j
n, (B.60)
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and

L̂z

[
(ix− y)f jn

]
= i~xf jn − ~yf jn + (ix− y)L̂zf

j
n. (B.61)

substituting all the above equalities in the equality (B.56)

Ĥ
[
(ix− y)f jn

]
=
~
m

(
π̂xf

j
n + iπ̂yf

j
n

)
+ En(ix− y)f jn. (B.62)

where the definition of the operators (2.164) was used,

π̂x = p̂x +
mωc

2
y, π̂y = p̂y −

mωc
2

x. (B.63)

Hence, we figure out that

Ĥf j+1
n = Ĥf j+1

n +
a~
m

(
π̂xf

j
n + iπ̂yf

j
n

)
+ i~ωc

√
a~nf jn−1. (B.64)

Then, using the commutation relations (2.168), (2.169) and the definition (B.24), we realized that the next
equality can be written (

π̂xf
j
n + iπ̂yf

j
n

)
= (π̂′x)j (π̂xϕn + iπ̂yϕn) = −2i~

√
2αnf jn−1, (B.65)

Finally, realizing that a = 2α~ we have that

a~
m

(
π̂xf

j
n + iπ̂yf

j
n

)
+ i~ωc

√
a~nf jn−1 = −i~ωc

√
a~nf jn−1 + i~ωc

√
a~nf jn−1 = 0, (B.66)

therefore, it satisfies the eigenvalue equation

Ĥf j+1
n = Enf

j+1
n . (B.67)

The proof for the expression (B.38) defining the functions gj+1
n (x, y) is similar to the one we have just done

here, therefore, is left for the interested reader.
Finally, we are going to calculate the action of the Hamiltonian (B.51) over the functions (B.50). To
accomplish this task, is helpful to write down the following equalities

p̂xLj+1
n =

j∑
m=0

(
i~2λcjmLmn + i~

√
a~ndjmLmn−1 − ~λ(x+ iy)cjmp̂xLmn −

√
a~n(x− iy)djmp̂xLmn−1

)
, (B.68)
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p̂2
xLj+1

n =

j∑
m=0

(
2i~2λcjmp̂xLmn + 2i~

√
a~ndjmp̂xLmn−1 − ~λ(x+ iy)cjmp̂

2
xLmn −

√
a~n(x− iy)djmp̂

2
xLmn−1

)
,

(B.69)

p̂yLj+1
n =

j∑
m=0

(
−~2λcjmLmn + ~

√
a~ndjmLmn−1 − ~λ(x+ iy)cjmp̂yLmn −

√
a~n(x− iy)djmp̂yLmn−1

)
, (B.70)

and

p̂2
yLj+1

n =

j∑
m=0

(
−2~2λcjmp̂yLmn + 2~

√
a~ndjmp̂yLmn−1 − ~λ(x+ iy)cjmp̂

2
yLmn −

√
a~n(x− iy)djmp̂

2
yLmn−1

)
,

(B.71)

substituting all the above expressions in the Hamiltonian (B.51) doing some rearrangements and identifications,
one could get the following expression

Ĥf j+1
n = Enf

j+1
n +

~i
m

j∑
m=0

(
~λcjm(π̂x + iπ̂y)Lmn +

√
a~ndjm(π̂x − iπ̂y)Lmn−1 − i2a

√
a~ndjm(x− iy)Lmn−1

)
,

(B.72)

where the definition of the operators (2.164) was used

π̂x = p̂x +
mωc

2
y, π̂y = p̂y −

mωc
2

x, (B.73)

where, due to the commutation, is deduced that

j∑
m=0

(
~λcjm(π̂x + iπ̂y)Lmn +

√
a~ndjm(π̂x − iπ̂y)Lmn−1 − i2a

√
a~ndjm(x− iy)Lmn−1

)
= 0. (B.74)

B.4 Commutation relations for the momentum operators

Here we are going to deduce a couple of commutation relations that are useful to find a second eigenvalue
expression regarding the index of degeneration j for the solutions found using the Landau’s gauge and
symmetric gauge. First, lets recall that for two operators that commute with each other, [Â, B̂] = 0 is
possible to use the binomial expansion (B.26)
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(Â+ B̂)j =

j∑
m=0

(
j

m

)
Âj−mB̂m, (B.75)

using this, we can write down

(
p̂x −

mωc
2

y
)j+1

p̂y =

j+1∑
M=0

(
j + 1

M

)
p̂j+1−M
x

(
−mωc

2
y
)M

p̂y, (B.76)

then, is easy to calculate the commutator

[yM , p̂y] = i~MyM−1, M ∈ Z+, (B.77)

with its aid we can write(
p̂x −

mωc
2

y
)j+1

p̂y =

j+1∑
M=0

(
j + 1

M

)
p̂j+1−M
x

(
−mωc

2

)M
(i~MyM−1 + p̂yy

M ), (B.78)

so, we can rewrite it as

(
p̂x −

mωc
2

y
)j+1

p̂y = i~
j+1∑
M=0

(
j + 1

M

)
p̂j+1−M
x

(
−mωc

2

)M
MyM−1 + p̂y

(
p̂x −

mωc
2

y
)j+1

. (B.79)

Now, analyzing the first term on the right hand of the above equality we realize that the term when M = 0
has no contribution on the sumation, thus,

i~
j+1∑
M=0

(
j + 1

M

)
p̂j+1−M
x

(
−mωc

2

)M
MyM−1 = i~

j+1∑
M=1

(
j + 1

M

)
p̂j+1−M
x

(
−mωc

2

)M
MyM−1, (B.80)

then, changing the index for Q = M − 1

i~
j∑

Q=0

(
j + 1

Q+ 1

)
p̂j−Qx

(
−mωc

2

)Q+1

(Q+ 1)yQ = i~(j + 1)
(
−mωc

2

) j∑
Q=0

(
j

Q

)
p̂j−Qx

(
−mωc

2
y
)Q

, (B.81)

where in the last equality the following property of the binomial coefficient was used(
j + 1

Q+ 1

)
=

(j + 1)!

(Q+ 1)!(j −Q)!
=

j + 1

Q+ 1

j!

Q!(j −Q)!
=

j + 1

Q+ 1

(
j

Q

)
. (B.82)

Hence, we can write
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(π̂′x)j+1p̂y = −i~(j + 1)
(mωc

2

)
(π̂′x)j + p̂y(π̂′x)j+1, (B.83)

or, writing it as a commutator

[p̂y, (π̂
′
x)j+1] = i~(j + 1)

(mωc
2

)
(π̂′x)j . (B.84)

We continue the analysis calculating the next expression

(π̂′x)j+1x =
(
p̂x −

mωc
2

y
)j+1

x =

j+1∑
M=0

(
j + 1

M

)
p̂j+1−M
x

(
−mωc

2
y
)M

x, (B.85)

here, we use the following commutation relation

[x, p̂Mx ] = i~Mp̂M−1
x , M ∈ Z+, (B.86)

we can write

j+1∑
M=0

(
j + 1

M

)
p̂j+1−M
x

(
−mωc

2
y
)M

x =

j+1∑
M=0

(
j + 1

M

)
(xp̂j+1−M

x − i~(j + 1−M)p̂j−Mx )
(
−mωc

2
y
)M

(B.87)

= x
(
p̂x −

mωc
2

y
)j+1

− i~
j+1∑
M=0

(
j + 1

M

)
(j + 1−M)p̂j−Mx

(
−mωc

2
y
)M

(B.88)

noting that when M = j+1 in the second term on the right hand side of the above equality has no contribution
to the sum, we have that

i~
j∑

M=0

(
j + 1

M

)
(j + 1−M)p̂j−Mx

(
−mωc

2
y
)M

= i~(j + 1)

j∑
M=0

(
j

M

)
p̂j−Mx

(
−mωc

2
y
)M

(B.89)

where the following property was used(
j + 1

M

)
=

(j + 1)!

M !(j + 1−M)!
=

j + 1

(j + 1−M)

j!

M !(j −M)!
=

j + 1

j + 1−M

(
j

M

)
. (B.90)

Hence, we found that

(π̂′x)j+1x = x(π̂′x)j+1 − i~(j + 1)(π̂′x)j , (B.91)
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or, rewriting it as a commutation relation

[x, (π̂′x)j+1] = i~(j + 1)(π̂′x)j . (B.92)

Using the results (B.84) y (B.92) we can write the commutator as follows

[π̂′y, (π̂
′
x)j+1] = i~mωc(j + 1)(π̂′x)j . (B.93)

Similarly, the following commutation relations can be obtaine

[(π̂′y)j+1, p̂x] = i~
(mωc

2

)
(j + 1)(π̂′y)j , (B.94)

and

[(π̂′y)j+1, y] = −i~(j + 1)(π̂′y)j , (B.95)

which can be used to obtain the commutation

[(π̂′y)j+1, π̂′x] = i~mωc(j + 1)(π̂′y)j . (B.96)

B.5 Calculation of expectation value of the position and position
squared

We continue performing the calculation of expectation values that are going to be useful to calculate the
density of states. First, we are going to calculate the expectation value of the position coordinate x and we
are going to constrain this calculation to the eigenfunctions given by eq.(2.159)

ϕn(x, y) =
e−|λ|

2/4α√
(2α)n−1πn!

exp
(
−α(x2 + y2)− λ(x+ iy)

)(
2α(x− iy) + λ

)n
, (B.97)

therefore, we can write

〈ϕn|x |ϕn〉 =

∫∫
R2

ϕ∗nxϕn dx dy, (B.98)

with a similar algebraic process than the one done in section (B.1) the above integral can be written as

〈ϕn|x |ϕn〉 =
(2α)n+1

πn!

n∑
k=0

(
n

k

)
×

×
∞∫
−∞

∞∫
−∞

x exp

(
−2α

((
x+

Re(λ)

2α

)2

+

(
y − Im(λ)

2α

)2
))(

x+
Re(λ)

2α

)2(n−k)(
y − Im(λ)

2α

)2k

dxdy,

(B.99)
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now, we perform the change of variable

ξ1 =
√

2α

(
x+

Re(λ)

2α

)
, (B.100)

and

ξ2 =
√

2α

(
y − Im(λ)

2α

)
, (B.101)

then, the integration has the following form

〈ϕn|x |ϕn〉 =
1

πn!

n∑
k=0

(
n

k

) ∞∫
−∞

∞∫
−∞

(
ξ1√
2α
− Re(λ)

2α

)
exp

(
−ξ2

1 − ξ2
2

)
ξ

2(n−k)
1 ξ2k

2 dξ1 dξ2. (B.102)

From this last expression and using the formula eq.(B.13) it can be seen that the following integral vanish

∞∫
−∞

exp
(
−ξ2

1

)
ξ

2(n−k)+1
1 dξ1 = 0, (B.103)

because is the integral of an odd function performed over a simmetric interval. Hence, using, again, the
expression eq.(B.13) we have the following result

〈ϕn|x |ϕn〉 = −Re(λ)

2α

1

πn!

n∑
k=0

(
n

k

)
Γ

(
n− k +

1

2

)
Γ

(
k +

1

2

)
. (B.104)

Finally, using our last result for the sum eq.(B.18), we can write

〈ϕn|x |ϕn〉 = −Re(λ)

2α
. (B.105)

An exactly process is needed to calculate the expectation value respect the coordinate y and the result
obtained

〈ϕn| y |ϕn〉 =
Im(λ)

2α
. (B.106)

We move on to calculate the expectation value x2. The integration method approach follows exactly the
same algebraic procedure than before, so the problem can be written as

〈ϕn|x2 |ϕn〉 =
(2α)n+1

πn!

n∑
k=0

(
n

k

)
×

×
∞∫
−∞

∞∫
−∞

x2 exp

(
−2α

((
x+

Re(λ)

2α

)2

+

(
y − Im(λ)

2α

)2
))(

x+
Re(λ)

2α

)2(n−k)(
y − Im(λ)

2α

)2k

dxdy,

(B.107)

and making the same variable substitution than before eq.(B.100) and eq.(B.101) we can write

〈ϕn|x2 |ϕn〉 =
1

πn!

n∑
k=0

(
n

k

) ∞∫
−∞

∞∫
−∞

(
ξ1√
2α
− Re(λ)

2α

)2

exp
(
−ξ2

1 − ξ2
2

)
ξ

2(n−k)
1 ξ2k

2 dξ1 dξ2. (B.108)
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Then, expanding the squared binomial factor, we have

〈ϕn|x2 |ϕn〉 =
1

πn!

n∑
k=0

(
n

k

) ∞∫
−∞

∞∫
−∞

(
ξ2
1

2α
+
Re2(λ)

(2α)2
− Re(λ)

2α

ξ1√
2α

)
exp

(
−ξ2

1 − ξ2
2

)
ξ

2(n−k)
1 ξ2k

2 dξ1 dξ2.

(B.109)

by the same argument did before and using the result eq.(B.103), the definition eq.(B.13) and eq.(B.18), the
above expression can be written as

〈ϕn|x2 |ϕn〉 =
1

2α

1

πn!

n∑
k=0

(
n

k

)
Γ

(
n− k + 1 +

1

2

)
Γ

(
k +

1

2

)
+
Re2(λ)

(2α)2
. (B.110)

At this point, it is useful to use the next property of the gamma function, being z ∈ Z+, we have that

Γ

(
z +

1

2

)
=

(2z)!

4zz!

√
π, (B.111)

note that the since n ≥ k then the quantity n− k + 1 ∈ Z+ then one can get the following equality

Γ

(
n− k + 1 +

1

2

)
=

(
n− k +

1

2

)
Γ

(
n− k +

1

2

)
, (B.112)

this allow us to rewrite our problem as

〈ϕn|x2 |ϕn〉 =
1

2α

(
n+

1

2

)
− 1

2α

∑n
k=0

(
n
k

)
kΓ
(
n− k + 1

2

)
Γ
(
k + 1

2

)
πn!

+
Re(λ)2

4α2
, (B.113)

we continue analyzing the expression in the middle using eq.(B.18)∑n
k=0

(
n
k

)
kΓ
(
n− k + 1

2

)
Γ
(
k + 1

2

)
πn!

=

∑n
k=0

(
n
k

)
kΓ
(
n− k + 1

2

)
Γ
(
k + 1

2

)∑n
k=0

(
n
k

)
Γ
(
n− k + 1

2

)
Γ
(
k + 1

2

) . (B.114)

The result of this ration is a real number but depends of the number n chosen to perform the summations.
We are going to denote the result as γn and lets denote the

ank =

(
n

k

)
Γ

(
n− k +

1

2

)
Γ

(
k +

1

2

)
, (B.115)

such that we can write ∑n
k=0 ka

n
k∑n

k=0 a
n
k

= γn, (B.116)

this last expression can be rewritten as
n∑
k=0

(k − γn)ank = 0. (B.117)

We point out the following observation, being m ∈ Z such that 0 ≤ m ≤ n, and noting that(
n

n−m

)
=

n!

(n−m)!(n− (n−m))!
=

(
n

m

)
(B.118)
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this allow us to write

ann−m =

(
n

n−m

)
Γ

(
n− (n−m) +

1

2

)
Γ

(
n−m+

1

2

)
= anm. (B.119)

We are going to illustrate some particular cases of how eq.(B.117) works that will allow us to deduce the
general result of the expression. Lets make n = 0, then

0∑
k=0

(k − γ0)a0
k = −γ0a

0
0 = 0 (B.120)

therefore γ0 = 0. Lets make n = 1, then

1∑
k=0

(k − γ1)a1
k = −γ1a

1
0 + (1− γ1)a1

1 = 0 (B.121)

using eq.(B.119), we see that a1
0 = a1

1, hence

(−2γ1 + 1)a1
0 = 0 (B.122)

we note that the solution of the above expression is γ1 = 1/2. we continue analyzing the case when n = 2,

2∑
k=0

(k − γ2)a2
k = −γ2a

2
0 + (1− γ2)a2

1 + (2− γ2)a2
2 = 0 (B.123)

using eq.(B.119) we see that a2
0 = a2

2, therefore

(−2γ2 + 2)a2
0 + (1− γ2)a2

1 = 0 (B.124)

we note that two equations are gotten for this case, however, the equations are not linearly independent
between them since one is equal to the other just by multiplying by the factor 1/2 or by 2. This tell us that
they have the same solution which is γ2 = 1. Now, we make n = 3

3∑
k=0

(k − γ3)a3
k = −γ3a

3
0 + (1− γ3)a3

1 + (2− γ3)a3
2 + (3− γ3)a3

3 = 0 (B.125)

using eq.(B.119), again, we see that the following equalities holds a3
0 = a3

3 and a3
1 = a3

2, so, we have that

(−2γ3 + 3)a3
0 + (3− 2γ3)a3

1 = 0 (B.126)
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we got the same equation in the factors which is −2γ3 + 3 = 0, and its solution is γ3 = 3/2.

This examples are illustrative to figure out the general proof. For any value of n given, we will have n + 1
terms in the sum, for n odd, each one of this terms there exist another term given by eq.(B.119) such that
when k = m the value of the term when k = n−m will add up such that

(m− γn)anm + (n−m− γn)ann−m = (n− 2γn)anm = 0 (B.127)

and the solution is γn = n/2. For the case when n is even it will happen exactly the same, however, there
will exist an extra term in the middle such that k = n/2(n

2
− γn

)
ann/2 = 0 (B.128)

however, the equations gotten here are not linearly independent since the other one its gonna be of the form
eq.(B.127) and they both have the same solution which is

γn = n/2. (B.129)

Finally, we conclude that ∑n
k=0

(
n
k

)
kΓ
(
n− k + 1

2

)
Γ
(
k + 1

2

)∑n
k=0

(
n
k

)
Γ
(
n− k + 1

2

)
Γ
(
k + 1

2

) =
n

2
, (B.130)

and using this result we can write the expectation value can be written as

〈ϕn|x2 |ϕn〉 =
1

4α
(n+ 1) +

Re(λ)2

4α2
. (B.131)

An exactly process can be used to prove that

〈ϕn| y2 |ϕn〉 =
1

4α
(n+ 1) +

Im(λ)2

4α2
. (B.132)

B.6 Orthogonality of the functions

An important property to prove is the orthogonality of the functions founded, even tough if they are not
ortogonal respect the degeneration index j but they are respect the energy index n. Lets calculate the inner
product respect two indexes n y m, after doing the change of variables

ξ1 =
√

2α

(
x+

Re(λ)

2α

)
, ξ2 =

√
2α

(
y − Im(λ)

2α

)
, (B.133)

where the Jacobian is J = 1/2α we have the following

〈ϕn|ϕm〉 = AnAm exp

(
λ∗λ

2α

)
(2α)(n+m)/2−1

∞∫
−∞

∞∫
−∞

f(ξ1, ξ2)dξ1dξ2, (B.134)
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where the following function was defined

f(ξ1, ξ2) = exp(−ξ2
1 − ξ2

2)(ξ1 − iξ2)n(ξ1 + iξ2)m, (B.135)

now, we are going to use polar coordinates ξ1 = r cos θ y ξ2 = r sin θ, where the function has the form

f(r, θ) = exp(−r2)rn+mei(m−n)θ, (B.136)

so, we have that

〈ϕn|ϕm〉 = AnAm exp

(
λ∗λ

2α

)
(2α)(n+m)/2−1

∞∫
0

2π∫
0

exp(−r2)rn+m+1ei(m−n)θdrdθ, (B.137)

we observe that the integral respect the angle θ vanishes for n 6= m and n,m ∈ Z+ we have

2π∫
0

ei(m−n)θdθ =
1

i(m− n)
ei(m−n)θ

∣∣∣∣2π
0

= 0. (B.138)
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Appendix C

Calculation details for electromagnetic
field and special cases

C.1 Proof that the solution for perpendicular fields satisfies the
complete Schrödinger equation

In the section (2.3) we found the solution for a static and parallel electromagnetic field with the two
dimensional Schrödinger’s equation (2.224) to be

ψn(x, y, t) =
1√
Ly

exp (−iχn(x, y, t))φn

(√
mωc
~

(
x− qE

mωc
t

))
, (C.1)

where the phase is define as follows

χn(x, y, t) =

(
~ωc

(
n+

1

2

)
− 1

2m

(
qE
ωc

)2
)
t

~
+

(
x− qE

mωc
t

)(
mωc
~

y − qE
~ωc

)
. (C.2)

Our current task is to prove that this expression satisfies the time dependent Scrödinger’s equation given by
eq.(2.224)

i~
∂ψn
∂t

= − ~
2

2m

(
∂2ψn
∂x2

+
∂2ψn
∂y2

+ 2i
mωc
~

y
∂ψn
∂x
− m2ω2

c

~2
y2ψn

)
− qEyψn. (C.3)

First, we are going to write down the result of a needed set of diferentiation

i~
∂ψn
∂t

=

[
~ωc

(
n+

1

2

)
+

1

2m

(
qE
ωc

)2

− qEy

]
ψn +

i~√
Ly

exp (−iχn)
∂φn
∂t

, (C.4)

2i
mωc
~

y
∂ψn
∂x

= 2

(
m2ω2

c

~2
y2 − mωc

~
qE
~ωc

y

)
ψn + 2i

mωc
~

y
1√
Ly

exp (−iχn)
∂φn
∂x

, (C.5)
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∂2ψn
∂y2

= −m
2ω2

c

~2

(
x− qE

mωc
t

)2

ψn, (C.6)

and

∂2ψn
∂x2

= −
(
mωc
~

y − qE
~ωc

)2

ψn − i
2√
Ly

(
mωc
~

y − qE
~ωc

)
exp (−iχn)

∂φn
∂x

+
1√
Ly

exp (−iχn)
∂2φn
∂x2

. (C.7)

Second, lets work with the following expression

∂2ψn
∂x2

+ 2i
mωc
~

y
∂ψn
∂x
− m2ω2

c

~2
y2ψn =

(
−2

m2ω2
c

~2
y2 + 2

mωc
~

qE
~ωc

y − q2E2

~2ω2
c

)
ψn

−i 2√
Ly

(
mωc
~

y − qE
~ωc

)
exp (−iχn)

∂φn
∂x

+
1√
Ly

exp (−iχn)
∂2φn
∂x2

+2

(
m2ω2

c

~2
y2 − mωc

~
qE
~ωc

y

)
ψn + 2i

mωc
~

y
1√
Ly

exp (−iχn)
∂φn
∂x

,

(C.8)

doing some simplification one can write

∂2ψn
∂x2

+ 2i
mωc
~

y
∂ψn
∂x
− m2ω2

c

~2
y2ψn = − q

2E2

~2ω2
c

ψn + i
2√
Ly

(
qE
~ωc

)
exp (−iχn)

∂φn
∂x

+
1√
Ly

exp (−iχn)
∂2φn
∂x2

,

(C.9)

thus, substituting this result, eq.(C.4), eq.(C.6) in eq.(2.224) and multiplying by
√
Ly exp (iχn), we can write

the next equality

[
~ωc

(
n+

1

2

)
− 1

2m

(
qE
ωc

)2

− qEy

]
φn + i~

∂φn
∂t

=

− ~
2

2m

(
− q

2E2

~2ω2
c

φn + 2i

(
qE
~ωc

)
∂φn
∂x

+
∂2φn
∂x2

− m2ω2
c

~2

(
x− qE

mωc
t

)2

φn

)
− qEyφn,

(C.10)

we continue doing some algebraic simplification to get the following

[
~ωc

(
n+

1

2

)]
φn + i~

∂φn
∂t

= − ~
2

2m

(
2i

(
qE
~ωc

)
∂φn
∂x

+
∂2φn
∂x2

− m2ω2
c

~2

(
x− qE

mωc
t

)2

φn

)
, (C.11)

78 Proof that the solution for perpendicular fields satisfies the complete Schrödinger equation



Quantum Dynamics For Single Charged Particle With Electromagnetic Field and The Consequences Of A New Solution

note that making the change of variable

φn = φn

(√
mωc
~

(
x− qE

mωc
t

))
, ξ =

√
mωc
~

(
x− qE

mωc
t

)
(C.12)

the next equality can be written

∂φn
∂t

= − qE
mωc

∂φn
∂x

(C.13)

hence, we can use it to simplify the prior result and write[
~ωc

(
n+

1

2

)]
φn = − ~

2

2m

(
∂2φn
∂x2

− m2ω2
c

~2

(
x− qE

mωc
t

)2

φn

)
, (C.14)

Finally, one can note that what is left is nothing but the harmonic oscillator equation with ξ =
√

mωc
~

(
x− qE

mωc
t
)

and since φn is the solution of the harmonic oscillator we conclude that the above equation holds as true and
therefore eq.(C.1) satisfies the time dependent Schrödinger equation eq.(2.224).

C.2 Charged particle with electromagnetic field (parallel case)

Lets analyze the situation where the electric and magnetic field directions are arranged in a way that they
are parallel between them but still constant. A posible selection of the vector fields are B = (0, B, 0) and
E = (0, E , 0) that can be described by the following potentials

A = B(z, 0, 0), (C.15)

and

φ = −Ey, (C.16)

this defines the following Schrödinger’s equation

i~
∂ψ

∂t
=

1

2m

[
(p̂x −mωcz)2ψ + p̂2

yψ + p̂2
zψ
]
− qEyψ. (C.17)

expanding the binomial squared and substituting the momentum operators, we get the following expression

i~
∂ψ

∂t
= − ~

2

2m

[
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
− 2i

mωc
~

z
∂ψ

∂x
− m2ω2

c

~2
z2ψ

]
− qEyψ. (C.18)

Similarly to the prior cases, we can take the Fourier transform respect the x variable, so, we can write down
the following equation in the Fourier space (k, y, z, t), defining

ψ̄ = Fx{ψ}, (C.19)

we can write

i~
∂ψ̄

∂t
= − ~

2

2m

[
−k2ψ̄ +

∂2ψ̄

∂y2
+
∂2ψ̄

∂z2
− 2

mωc
~

zkψ̄ − m2ω2
c

~2
z2ψ̄

]
− qEyψ̄, (C.20)
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or completing the squared quantity,

i~
∂ψ̄

∂t
= − ~

2

2m

[
∂2ψ̄

∂y2
+
∂2ψ̄

∂z2
−
(mωc
~

z + k
)2

ψ̄

]
− qEyψ̄. (C.21)

From this expression, it can be seen that it is separable, proposing the following ψ̄ = ϕ1(y, t)ϕ2(k, z, t)

i~
1

ϕ1

∂ϕ1

∂t
+ i~

1

ϕ2

∂ϕ2

∂t
= − ~

2

2m

1

ϕ1

∂2ϕ1

∂y2
− qEy − ~2

2m

[
1

ϕ2

∂2ϕ2

∂z2
−
(mωc
~

z + k
)2
]
. (C.22)

then, we have the following couple of ordinary differential equations

i~
∂ϕ1

∂t
= − ~

2

2m

∂2ϕ1

∂y2
− qEyϕ1, (C.23)

i~
∂ϕ2

∂t
= − ~

2

2m

[
∂2ϕ2

∂z2
−
(mωc
~

z + k
)2

ϕ2

]
. (C.24)

It can be seen immediately that eq.(C.24) is the displaced harmonic oscillator and has the following solution

gn = ϕ2(k, z, t) = e−i
En
~ tφn

(√
mωc
~

(
z +

~
mωc

k

))
, (C.25)

where the harmonic oscillator was define as

φn(ξ) =
1√

2nn!

(mωc
π~

)1/4

exp

(
−ξ

2

2

)
Hn(ξ), (C.26)

and the eigenvalues are

En = ~ωc
(
n+

1

2

)
. (C.27)

On the other hand, equation (C.23) is the quantum bouncer and the solution can be found in reference [84,
p. 109] and can be written as

ϕ1(y, t) =
A√
t

∫
dy′ϕ0(y′) exp

(
im

2~t

(
y − y′ + qEt2

2m

)2

− i (qE)2t3

6m~
+ iqEy′ t

~

)
, (C.28)

where ϕ0(y′) is an initial state of the particle. Note that the above expression is a solution for the complete
Schrödinger equation define in (C.23). Therefore the solution in the Fourier space is

ψ̄(k, y, z, t) = ϕ1(y, t)e−i
En
~ tφn

(√
mωc
~

(
z +

~
mωc

k

))
, (C.29)

then, we can get the solution in the original space by performing the inverse Fourier transform,

ψ(x, y, z, t) = F−1
x {ψ̄} = ϕ1(y, t)e−i

En
~ t

∫
R

e−ikxφn

(√
mωc
~

(
z +

~
mωc

k

))
dk, (C.30)

making the following change of variable

k =

√
mωc
~

ξ − mωc
~

z, (C.31)
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and using the result that of the appendix (A.1) we get

ψn(x, y, z, t) = Aϕ1(y, t)e−i
En
~ tei

mωc
~ xzφn

(√
mωc
~

x

)
, (C.32)

where A is the normalization constant.
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Appendix D

Electromagnetic flux quantization and
density of states

In this appendix we discuss different approaches that show the possible reasons for the quantization of both
field, the magnetic and electric fields. We begin analyzing the solution obtained for the partial differential
equation using solely the Landau’s gauge and extend the discussion to the case where the electric field is
added.

D.1 Density of states and magnetic flux quantization

Classically, the particle is expected to describe a circular trajectory on the plane, therefore, the radius of this
trajectory can be written as r2 = x2 + y2, therefore, the area described for this trajectory is A = πr2. Our
task here is to calculate the expectation value of this area, that is

〈A〉 = π 〈x2〉+ π 〈y2〉 . (D.1)

We begin the calculations using the solutions found in chapter (2) for the Landau’s gauge, eq.(2.49),

ψn(x, y, z) =
1√
LyLz

exp

(
−imωc

~
xy + i

√
2mE2

~
z

)
φn

(√
mωc
~

x

)
, (D.2)

limiting the analysis for the two dimensional system we have

ψn(x, y) =
1√
Ly

exp
(
−imωc

~
xy
)
φn

(√
mωc
~

x

)
, (D.3)

then, one can use the properties of the harmonic oscillator to calculate the following integral

〈ψn|x2 |ψn〉 =
1

Ly

Ly∫
−Ly

∞∫
−∞

φ∗n

(√
mωc
~

x

)
x2φn

(√
mωc
~

x

)
dx dy (D.4)

making the change of variable

ξ =

√
mωc
~

x, (D.5)
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and solving the integral respect y we have that

〈ψn|x2 |ψn〉 = 2
~

mωc

√
~

mωc

∞∫
−∞

φ∗n(ξ)ξ2φn(ξ) dξ (D.6)

now, we can use the following recurrence relation of the Hermite polynomials

ξHn(ξ) = nHn−1(ξ) +
1

2
Hn+1(ξ), (D.7)

to write

ξ2φn(ξ) =
1√

2nn!

(mωc
π~

)1/4

exp

(
−ξ

2

2

)(
n(n− 1)Hn−2(ξ) +

(
n+

1

2

)
Hn(ξ) +

1

4
Hn+2(ξ)

)
, (D.8)

using the fact that the Hermite polynomials are ortogonal respect a gaussian function, that is

∞∫
−∞

e−ξ
2

HnHm(ξ)dξ = 2nn!
√
πδn,m (D.9)

we can write the following expression

〈ψn|x2 |ψn〉 = 2
~

mωc

(
n+

1

2

)
. (D.10)

Continuing, the expectation value respect y2 is really straight forward and the following result is obtained

〈ψn| y2 |ψn〉 = 2
L2
y

3
. (D.11)

Therefore, the expected value of the area described by the particles trajectory is

〈ψn|A |ψn〉 = 2π
~

mωc

(
n+

1

2

)
+ 2π

L2
y

3
, (D.12)

hence, the area described between two energy levels n1 and n2 is

∆A = 〈ψn2
|A |ψn2

〉 − 〈ψn1
|A |ψn1

〉 = 2π
~

mωc
(n2 − n1). (D.13)

Finally, we see that the density of states per unit area can be written as

mωc
~

= 2π
∆n

∆A
, (D.14)

where ∆n = n2 − n1.

On the other hand, this calculation can be done for the symmetric gauge eigenfunctions, the calculation
of the expected values of the coordinates squared is more complicated but can be found in the appendix
(B.5). The results are the following
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〈ϕn|x2 |ϕn〉 =
1

4α
(n+ 1) +

Re(λ)2

4α2
, (D.15)

and

〈ϕn| y2 |ϕn〉 =
1

4α
(n+ 1) +

Im(λ)2

4α2
, (D.16)

where α = mωc/4~. Therefore, the expectation value of the area described by the particle using this gauge is

〈ϕn|A |ϕn〉 =
π

2α
(n+ 1) + π

λ∗λ

4α2
, (D.17)

and the are described between two energy levels n2 and n1 is

∆A = 2π
~

mωc
(n2 − n1). (D.18)

and the density of states per unit area is exactly the same than in the prior case and is given by the expression
eq.(D.14).

Alternatively, the solution eq.(D.3) has an interesting property, if one propose invariance over the following
boundary condition at x = Lx and y → y + Ly

ψn(Lx, y + Ly) = e−i
mωc

~ LxLyψn(Lx, y) = ψn(Lx, y), (D.19)

one has that the quantity
mωc
~

LxLy = 2πk, k ∈ Z. (D.20)

Even though, it looks like the same result that the density of states, the physical meaning is not the same,
since the index k is an integer related to the periodicity and is not related to the difference of two energy
levels.

D.2 Electromagnetic flux quantization due to symmetry invariance

In the first attempt to study the quantum dynamics of a charged particle under a static magnetic field Landau
did the remarkable conclusion that the density of states per unit area must be proportional to the magnetic
field intensity, implying that the magnetic flux must be quantized [1]. This result has been useful to prove
the resistance quantization in the integer quantum Hall effect discovered by Klitzing [3]. This phenomena
has been explained by Laughlin as a consequence of the Schrödinger equation invariance under unitary
gauge transformations [4]. Later on, the fractional quantum Hall effect was discovered experimentally [22] by
Stormer but explained by Laughlin where he used a fractional charge quasiparticle hypothesis to do so [43,44].
However, a generalization of Laughlin’s invariance argument has been done by Tao and Wu [52]. In this last
study, the authors made the remarkable conclusion that the fractional quantum Hall effect exist only if the
system’s ground state is degenerated, which is, in fact, a contradiction to Laughlin uniqueness ground state
argument show in reference [44]. However, in this section we show that the conclusion of Tao and Wu were in
the right direction, since the operators responsable of the system degeneration defines unitary transformations
that are responsables of the quantization of the resistivity and generates the fractional quantum Hall effect.

The no relativistic Hamiltonian that describes the quantum dynamics of a charge particle under an
electromagnetic field is written as

Ĥ =
1

2m

(
P̂ − q

c
A
)2

+ qφ, (D.21)
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where q is the particle charge, m is the particle mass, c is the speed of light, A is the magnetic vector potential
such that the magnetic field is given by its curl, B = ∇ × B, φ = φ(x, y, z) is the electric potential such
that the electric field is given by E = −∇φ and P̂ = −i~∇ is the momentum operator. Along this work,
we study the cases where the magnetic field is described by the Landau’s gauge and the symmetric gauge
such that the magnetic field is constant and parallel to the z axis, hence, the vector potential is written
as A = (Ax(x, y), Ay(x, y), 0), this allow us to write the Hamiltonian as Ĥ = H + p̂2

z/2m where the two
dimensional Hamiltonian was define as

H =
1

2m

((
p̂x −

q

c
Ax

)2

+
(
p̂y −

q

c
Ay

)2
)

+ qφ. (D.22)

Since the coordinates of the vector A do not depend on z, then this coordinate can be separated and the

solutions has the form of Ψ(x, y, z) ∼ ψ(x, y)ei
√

2mEz
~ z where ψ = ψ(x, y) is the solution of the Schrödinger

equation defined by the Hamiltonian eq.(D.22). From now on, for the sake of simplicity, we are going to focus
on the two dimensional system described by the Hamiltonian H.

D.2.1 Symmetries for the Landau’s gauge

The two dimensional Hamiltonian system without electric field E = 0 but with constant magnetic field
described by the Landau gauge A = B(−y, 0, 0) is written as

H =
1

2m

(
(p̂x +mωcy)2 + p̂2

y

)
, (D.23)

were ωc = qB/mc, was define. It has been proved that the canonic momentum operators described by the
inversion of the magnetic field direction and using the alternative Landau’s gauge are conserved [85], those
operators are define as

π̂′x = p̂x, (D.24)

and
π̂′y = p̂y +mωcx, (D.25)

such that
[π̂′x,H] = [π̂′y,H] = 0. (D.26)

The non separable eigenfunctions are [86,87]

f0
n =

1√
Ly
e−i

mωc
~ xyφn

(√
mωc
~

x

)
, (D.27)

where the harmonic oscillator function was defined as

φn(χ) =
1√

2nn!

(mωc
π~

)1/4

exp

(
−χ

2

2

)
Hn(χ), (D.28)

having the Landau’s levels as eigenvalues

En = ~ωc
(
n+

1

2

)
n ∈ Z+. (D.29)

It has been shown that this system is numerable degenerated since each time we apply the operator eq.(D.24)
on the eigenfunction eq.(D.27) it will give us back new eigenfunction [85,88], this eigenfunctions are denoted
as

(π̂′x)jf0
n = f jn, j ∈ Z+, (D.30)
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each one of this functions satisfies the eigenvalue equation

Hf jn = Enf
j
n. (D.31)

On the other hand, its not difficult to prove that the operator eq.(D.25) does not give any new eigenfunction
since π̂′yψn = 0 but, in fact, it can be used to build up a second eigenvalue equation regarding the index j

π̂′yπ̂
′
xf

j
n = imωc~(j + 1)f jn. (D.32)

Now, the conserved operators are generators of transformations and can be used to define conserved unitary
operators,

Ûx = e−i
δx
~ π̂
′
x , (D.33)

and

Ûy = e−i
δy
~ π̂
′
y , (D.34)

where δx and δy are displacement, note that the operator eq.(D.33) is the translation operators along the
x axis and the operator eq.(D.34) is the magnetic translational operator with inversed magnetic field. Both
operators leaves the Hamiltonian invariant, therefore, it has the following symmetries

H = ÛxHÛ†x, H = ÛyHÛ†y . (D.35)

However, in Schrödinger scheme, the general solution for this situation can be written as

Ψ(x, y, t) =
∑
n,j

Cn,je
−iEn~ tf jn(x, y). (D.36)

In general, is highly difficult to work with the whole set of eigenfunctions but there is a specific choice of
constant which simplifies the situation, note that if we chose the constants to be

Cn,j = Cn
1

j!

δxj

(i~)j
, (D.37)

the general solution has the following form

Ψ(x, y, t) =
∑
n

Cne
−iEn~ tÛxf

0
n(x, y) =

∑
n

Cne
−iEn~ tf0

n(x− δx, y). (D.38)

Hence, it can be seen that the effect of the degeneration in the system is to displace it along the x axis by
an amount of δx. Now, the action of the operator eq.(D.34) on the above expression gives

ÛyΨ(x, y) = e−i
mωc

~ δxδyΨ(x, y), (D.39)

therefore it remains invariant if the phase is such that

mωc
~

δxδy = 2πl, l ∈ Z. (D.40)

This is the same quantization condition that Landau presented for the density of states, however, in this case
the index l has no relation with the states index n. Note that the above condition implies the quantization
of the magnetic flux.
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D.2.2 Symmetries obtained with the symmetric gauge

A magnetic field in the same direction and with the same magnitud than in the previous case can be described
using the so called symmetric gauge, which is written as follows

A =
B

2
(−y, x, 0). (D.41)

This gauge selection give us the two dimensional Hamiltonian eq.(D.22)

H =
1

2m

(
p̂2
x + p̂2

y −mωcL̂z +
m2ω2

c

4
(x2 + y2)

)
. (D.42)

where the angular momentum was define L̂z = xp̂y − yp̂x. The non separable solution of this expression
is [86,87]

ϕn(x, y) =
e−|λ|

2/4α√
(2α)n−1πn!

exp
(
−α(x2 + y2)− λ(x+ iy)

)(
2α(x− iy) + λ

)n
, α =

mωc
4~

, (D.43)

where λ ∈ C is an integration constant and the eigenvalues are its same Landau’s levels defined in eq.(D.29).
Similarly than the previous case, the conserved operators are the canonic momentum defined by the inversion
of the magnetic field direction [85]

π̃x = p̂x −
mωc

2
y, π̃y = p̂y +

mωc
2

x, (D.44)

and even though if the angular momentum L̂z is also conserved, it turns out that it can be written as a linear
combination of this two operators. Hence, we define the notation ϕn(x, y) = f0

n(x, y) = g0
n(x, y), and the set

of eigenfunctions can be obtained by the application of the operators eq.(D.44) on the function eq.(D.43) such
that (π̂′x)jϕn(x, y) = f jn(x, y) and (π̂′y)jϕn(x, y) = gjn(x, y) for j = 0, 1, 2, .... All this expressions satisfies the
eigenvalue equation respect the energy level index n

Ĥf j+1
n = Enf

j+1
n , Ĥgj+1

n = Eng
j+1
n , (D.45)

besides, a second eigenvalue equation regarding the degeneration index j [85]

(π̃y + iπ̃x + 2~λ)π̃′xf
j
n = i~mωc(j + 1)f jn, (iπ̃y − π̃x + 2i~λ)π̃yg

j
n = i~mωc(j + 1)gjn. (D.46)

Hence, we can define unitary transforms using the operators of this second eigenvalue expressions as follows

Ûx = e−i
δx
~ π̃x , (D.47)

and

Ûy = exp

(
−i δy
~

(π̃y + iπ̃x + 2~λ)

)
, (D.48)

Again, note that those operators are translation operators times a phase factor. This two unitary operators
define us the symmetries of the Hamiltonian as

H = ÛxHÛ†x, H = ÛyHÛ†y . (D.49)

Similarly to the previous case, the general solution can be written as a linear combination of the degenereted
eigenfunctions, that is,

Ψ(x, y) =
∑
n,j

Cn,jf
j
n(x, y), (D.50)
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if we define the same constants as shown in eq.(D.37), the general solution can be written as

Ψ(x, y) =
∑
n

CnÛxϕn(x, y) = exp
(
i
mωc
2~

yδx
)∑

n

Cnϕn(x− δx, y). (D.51)

Now, applying the operator eq.(D.48) on this expression, is possible to show that the next equality is obtained

ÛyΨ(x, y) = exp
(
−imωc

~
δxδy

)
Ψ(x, y), (D.52)

hence, the invariance of the system with this symmetry requires the quantization of the magnetic flux

mωc
~

δxδy = 2πl, l ∈ Z. (D.53)

A similar process can be follow using the functions gjn and the same result is obtained.

D.2.3 Electromagnetic flux quantization

Here, we are going to analyze the system symmetries when a static electric field is added such that it is
perpendicular to the magnetic field. This case is of particular interest since this set up is widely used in
quantum Hall effect experiments [3, 22]. To describe this system we are going to use the Landau’s gauge
used in section (D.2.1), A = B(−y, 0, 0), and the electrical potential is chosen to be φ = −Ey, where E is
the electric field intensity. Note that this potentials selection satisfies the condition that B ·E = 0. The two
dimensional Hamiltonian described by eq.(D.22) is

H =
1

2m

(
p̂2
x + p̂2

y + 2mωcyp̂x +m2ω2
cy

2
)
− qEy, (D.54)

and the non separable variable solution of the complete Schrödinger’s equation

i~
∂ψ

∂t
= Hψ, (D.55)

is [86,87]

ψn(x, y, t) =
1√
Ly

exp (−iχn(x, y, t))φn

(√
mωc
~

(
x− qE

mωc
t

))
, (D.56)

where φn(ξ) is the harmonic oscillator defined in eq.(D.28) and the phase has been defined as follows

χn(x, y, t) =

(
~ωc

(
n+

1

2

)
− 1

2m

(
qE
ωc

)2
)
t

~
+

(
x− qE

mωc
t

)(
mωc
~

y − qE
~ωc

)
. (D.57)

Similarly as we did in section (D.2.1), we define the two canonic momentum operator due to the inversion
of the magnetic fields direction as in expressions eq.(D.24) and eq.(D.25), this help us to define the following
set of operators

π̂′x = p̂x, (D.58)

Π̂′y = π̂′y − qEt, (D.59)

Ê = i~
∂

∂t
, (D.60)

and using the Heisenberg definition for an evolution of an operator f̂

df̂

dt
=

1

i~
[f̂ ,H] +

∂f̂

∂t
, (D.61)
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it can be found that all the three operators eq.(D.58), eq.(D.59) and eq.(D.60) are conserved. Since Π̂′yψn = 0
the only two operators that define new solutions of the complete Schrödinger equation eq.(D.55) are eq.(D.58)
and eq.(D.60). Using the operator eq.(D.58) we can define the set of functions f jn(x, y, t) = p̂jxψn(x, y, t) where
n, j = 0, 1, 2, .... Each one of this functions satisfies the time dependent Schrödinger equation, that is,

Hf jn = i~
∂f jn
∂t

, (D.62)

besides, the operator eq.(D.59) can be used to build an eigenvalue equation regarding the degeneration index
j,

Π̂′yπ̂
′
xf

j
n = imωc~(j + 1)f jn. (D.63)

On the other hand, the energy operator eq.(D.60) do not share bases with the Hamiltonian, instead it is a
generator of solutions of the complete Schrödinger equation. This is easy to prove, using the fact that any
power of this operator commutes with the Hamiltonian, that is, [(Ê)j , Ĥ] = 0, where j ∈ Z+, then it follows
that

(Ê)jĤψn = Ĥ(Ê)jψn, (D.64)

defining the functions gjn(x, y, t) = (Ê)jψn(x, y, t) and using the expression eq.(D.55), it follows that

i~
∂gjn
∂t

= Ĥgjn. (D.65)

Hence, the energy operator combined with the operator eq.(D.59) can be used to find a second eigenvalue
expression

Π̂′yÊg
j
n = iqE~(j + 1)gjn. (D.66)

An interesting observation about the expressions eq.(D.63) and eq.(D.66) is that the eigenvalues of the first
one are proportional to the magnetic field intensity (since ωc = qB/mc) and the eigenvalues of the second
one are proportional to the electric field intensity E . At this point, is posible to define the unitary operators

Ûx = exp

(
− i
~
δxπ̂′x

)
, (D.67)

Ûy = exp

(
− i
~
δyΠ̂′y

)
, (D.68)

and

Ût = exp

(
i
δt

~
Ê

)
. (D.69)

Secondly, one can rewrite the equation eq.(D.55) as (H− Ê)ψ = 0 and define the operator Ô = H− Ê which
defines the complete Schrödinger equation. In this case, since the operator eq.(D.59) depends explicitly on
the time variable t, the symmetries are defined regard the operator Ô instead of the Hamiltonian alone.
Therefore, the complete Schrödinger equation has the following symmetries

Ô = ÛxÔÛ
†
x, Ô = ÛyÔÛ

†
y , Ô = ÛtÔÛ

†
t . (D.70)

Then, the general solution to this problem is written as

Ψ(x, y, t) =
∑
n,j,j′

Cn,j,j′(Ê)j
′
p̂jxψn, (D.71)
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choosing the following form of the constants

Cn,j,j′ = Cn
1

j!

δxj

(i~)j
1

j′!

δtj
′

(−i~)j′
, (D.72)

the general solution can be written as

Ψ(x, y, t) =
∑
n

CnÛtÛxψn(x, y, t) =
∑
n

Cnψn(x− δx, y, t− δt), (D.73)

applying the operator eq.(D.59) on this expression one has that

ÛyΨ(x, y, t) = exp
(
−imωc

~
δxδy

)
exp

(
i
qE
~
δtδy

)
Ψ(x, y, t), (D.74)

and we see that this expression remains invariant only if the following quantities are quantized (note that
the quantities δx and δy are not infinitesimal)

mωc
~

δxδy = 2πl, l ∈ Z, (D.75)

and
qE
~
δtδy = 2πk, k ∈ Z. (D.76)

The first one of the above quantities is the usual quantization of the magnetic flux which implies the
quantization of the magnetic flux. The second one implies the quantization of the electric flux, however,
it can be rewritten as

Eδy δt
q

=
h

q2
k (D.77)

where h = 2π~, note that Eδy is the voltage generated between two points along the y axis and q/δt is the
current generated by a single particle, this tell us that the above equality can be regarded as a resistance
quantization proportional to the von Klitzing constant h/q2.
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