Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12104/66048
Título: Master equations for effective Hamiltonians
Autor: Klimov, Andrei B.
Romero, J.L.
Delgado, J.
Sanchez-Soto, L.L.
Fecha de publicación: 2003
Resumen: We re-elaborate on a general method for obtaining effective Hamiltonians that describe different nonlinear optical processes. The method exploits the existence of a nonlinear deformation of the su (2) algebra that arises as the dynamical symmetry of the original model. When some physical parameter (usually related to the dispersive limit) becomes small, we immediately get a diagonal effective Hamiltonian that represents correctly the dynamics for arbitrary states and long times. We apply the technique to obtain how the noise terms in the original model transform under this scheme, providing a systematic way of including damping effects in processes described in terms of effective Hamiltonians.
URI: http://hdl.handle.net/20.500.12104/66048
Aparece en las colecciones:Producción científica UdeG (prueba)

Ficheros en este ítem:
No hay ficheros asociados a este ítem.


Los ítems de RIUdeG están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.