Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12104/62801
Title: A generalized any particle propagator theory: Assessment of nuclear quantum effects on electron propagator calculations
Author: Romero, J.
Posada, E.
Flores-Moreno, R.
Reyes, A.
Issue Date: 2012
Abstract: In this work we propose an extended propagator theory for electrons and other types of quantum particles. This new approach has been implemented in the LOWDIN package and applied to sample calculations of atomic and small molecular systems to determine its accuracy and performance. As a first application of the method we have studied the nuclear quantum effects on electron ionization energies. We have observed that ionization energies of atoms are similar to those obtained with the electron propagator approach. However, for molecular systems containing hydrogen atoms there are improvements in the quality of the results with the inclusion of nuclear quantum effects. An energy term analysis has allowed us to conclude that nuclear quantum effects are important for zero order energies whereas propagator results correct the electron and electron-nuclear correlation terms. Results presented for a series of n-alkanes have revealed the potential of this method for the accurate calculation of ionization energies of a wide variety of molecular systems containing hydrogen nuclei. The proposed methodology will also be applicable to exotic molecular systems containing positrons or muons. © 2012 American Institute of Physics.
URI: http://hdl.handle.net/20.500.12104/62801
Appears in Collections:Producción científica UdeG (prueba)

Files in This Item:
There are no files associated with this item.


Items in RIUdeG are protected by copyright, with all rights reserved, unless otherwise indicated.