Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12104/45547
Título: Unitarily inequivalent mutually unbiased bases for n qubits
Autor: Sehrawat, A.
Klimov, Andrei B.
Fecha de publicación: 2014
Resumen: The standard construction of complete sets of mutually unbiased bases (MUBs) in prime power dimensions is based on the quadratic Gauss sums. We introduce complete MUB sets for three, four, and five qubits that are unitarily inequivalent to all existing MUB sets. These sets are constructed by using certain exponential sums, where the degree of the polynomial appearing in the exponent can be higher than 2. Every basis of these MUBs (except the computational) consists of two disjoint blocks of vectors with different factorization structures and associated with a unique hypergraph (or graph) that represents an interaction between the qubits. � 2014 American Physical Society.
URI: http://www.scopus.com/inward/record.url?eid=2-s2.0-84918528085&partnerID=40&md5=89dcb0b00ffe963877e787d6c5f90d89
Aparece en las colecciones:Producción científica UdeG

Ficheros en este ítem:
No hay ficheros asociados a este ítem.

Los ítems de RIUdeG están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.