Please use this identifier to cite or link to this item:
Title: Robust discrete control of nonlinear processes: Application to chemical reactors
Author: Garcia-Sandoval, J.P.
Gonzalez-Alvarez, V.
Castillo-Toledo, B.
Pelayo-Ortiz, C.
Issue Date: 2008
Abstract: Trajectory tracking or rejecting persistent disturbances with digital controllers in nonlinear processes is a class of problems where classical control methods breakdown since it is very difficult to describe the dynamic behavior over the entire trajectory. In this paper, a model-based robust control scheme is proposed as a potential solution approach for these systems. The proposed control algorithm is a robust error feedback controller that allows us to track predetermined operation profiles while attenuating the disturbances and maintaining the stability conditions of the nonlinear processes. Various numerical simulation examples demonstrate the effectiveness of this robust scheme. Two examples deal with effective trajectory tracking in chemical reactors over a wide range of operating conditions. The third example analyses the attenuation of periodic load in a biological reactor. All examples illustrate the ability of the robust control scheme to provide good control in the face of parameter uncertainties and load disturbances. � 2008 Elsevier Ltd. All rights reserved.
Appears in Collections:Producción científica UdeG

Files in This Item:
There are no files associated with this item.

Items in RIUdeG are protected by copyright, with all rights reserved, unless otherwise indicated.