Please use this identifier to cite or link to this item:
Title: Quasi-probability distributions for the simplest dynamical groups
Author: Klimov, Andrei B.
Chiumakov, S.M.
Issue Date: 2000
Abstract: We prove that the Wigner-Stratonovich-Agarwal operator that defines the quasi-probability distribution on the sphere [for the SU(2) dynamical group] can be written as an integral of the SU(2) (irreducible unitary) representation element with respect to a single variable that labels the orbits in the coadjoint representation. This allows us to consider contractions of the SU(2) quasi-probability distribution to the cases of the Heisenberg-Weyl group and the two-dimensional Euclidean group. � 2000 Optical Society of America.
Appears in Collections:Producción científica UdeG

Files in This Item:
There are no files associated with this item.

Items in RIUdeG are protected by copyright, with all rights reserved, unless otherwise indicated.