Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12104/40683
Título: Discrete coherent and squeezed states of many-qudit systems
Autor: Klimov, Andrei B.
Munoz, C.
Sanchez-Soto, L.L.
Fecha de publicación: 2009
Resumen: We consider the phase space for n identical qudits (each one of dimension d, with d a primer number) as a grid of dn � dn points and use the finite Galois field GF (dn) to label the corresponding axes. The associated displacement operators permit to define s -parametrized quasidistributions on this grid, with properties analogous to their continuous counterparts. These displacements allow also for the construction of finite coherent states, once a fiducial state is fixed. We take this reference as one eigenstate of the discrete Fourier transform and study the factorization properties of the resulting coherent states. We extend these ideas to include discrete squeezed states, and show their intriguing relation with entangled states of different qudits. � 2009 The American Physical Society.
URI: http://www.scopus.com/inward/record.url?eid=2-s2.0-70350613256&partnerID=40&md5=927b8d5ae0bc80c0ff9411bdbd6564e1
Aparece en las colecciones:Producción científica UdeG

Ficheros en este ítem:
No hay ficheros asociados a este ítem.

Los ítems de RIUdeG están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.