Please use this identifier to cite or link to this item:
Title: Conclusions and future work
Author: Sanchez, E.N.
Alanis, A.Y.
Loukianov, A.G.
Issue Date: 2008
Abstract: The first designed robust direct neural control scheme is based on the backstepping technique, approximated by a high order neural network. On the basis of the Lyapunov approach, the respective stability analysis, for the whole closed-loop system, including the extended Kalman filter (EKF)-based NN learning algorithm, is also performed. The second robust indirect control is designed with a recurrent high order neural network, which enables to identify the plant model. A strategy to avoid specific adaptive weights zero-crossing and conserve the identifier controllability property is proposed. Based on this neural identifier and applying the discrete-time block control approach, a nonlinear sliding manifold with a desired asymptotically stable motions was formulated. Using a Lyapunov functions approach, a discrete-time sliding mode control that makes the designed sliding manifold to be attractive was introduced. � 2008 Springer-Verlag Berlin Heidelberg.
Appears in Collections:Producción científica UdeG

Files in This Item:
There are no files associated with this item.

Items in RIUdeG are protected by copyright, with all rights reserved, unless otherwise indicated.